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Abstract

Robust GPS-denied navigation of mobile robots is becoming increasingly important
as robots become more ubiquitous. Cameras are powerful sensors for this application
due to their low cost and high information density. The task of using camera-based
computer vision techniques for navigation is typically referred to as visual simulta-
neous localization and mapping (SLAM), where a robot both estimates its pose and
reconstructs its environment simultaneously using only cameras.

Most existing work for visual SLAM relies on the use of the pinhole camera model,
which requires that images from wider angle, more distorted lenses be rectified before
they are usable. This limits the field of view well below 180 degrees. However,
cameras with omnidirectional fisheye lenses can see much more of their surroundings,
which suggests they may be beneficial for the visual SLAM task; this hypothesis is
supported by the trend that recent commercial products that rely on robust visual
navigation use fisheye cameras.

In this thesis, we explore the apparent discrepancy between the types of cameras
traditionally used for navigation tasks in the research community and in industry
where robustness is critical. We propose that the scarcity of work using omnidirec-
tional cameras is due to an ill-formed belief that adapting fisheye lenses into tra-
ditional computer vision algorithms is infeasible or not worth the effort required to
redesign those algorithms. To show this, a benchmarking suite for stereo visual SLAM
was developed using traditional feature-based visual odometry algorithms. The build-
ing block components of visual SLAM, including feature correspondence, odometry,
and reconstruction, were evaluated for both fisheye and perspective cameras. The
results show that not only do omnidirectional fisheye cameras easily plug into exist-
ing algorithms with minimal modification, they also result in better performance for
navigation tasks than perspective cameras with limited field of view.

Thesis Supervisor: Nicholas Roy
Title: Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Motivation

As robots are increasingly integrated into our daily lives, more focus has been placed

on robustness in the real world. The combination of smaller, more powerful computers

and sensors as well as more efficient algorithms have led to the rise of mobile robots

such as autonomous cars, aerial photography drones, and search and rescue drones.

A particular type of these mobile robots known as micro-aerial vehicles (MAVs) are

an active area of research due to their size and aerial mobility having a wide range

of applications. The challenge of MAVs stems from their limited size and power.

Because MAVs must be able to navigate in unknown environments with potentially

limited communication, onboard computational resources, and perception systems, it

can be challenging to develop robust autonomy solutions.

One of the key tasks for autonomous flight is estimating the vehicle’s state in its

surrounding 3D environment. One way to estimate the vehicle’s position is with a

GPS, but this requires wireless communication that is not available in many environ-

ments, most notably indoors. Other sensors must therefore be used to estimate the

vehicle’s state as well as map its surroundings, which GPS also cannot provide. The

task of estimating the vehicle’s pose (position and orientation) while simultaneously

building a map of the obstacles around it and localizing itself relative to that map is

known as the simultaneous localization and mapping (SLAM) problem. The challenge

15



(a) LiDAR (b) Active RGB-D Camera

(c) Stereo Camera (d) Monocular Camera

Figure 1-1: Different sensor modalities that can be used for SLAM

of simultaneously computing the pose of a vehicle relative to a map while building a

map relative to the pose, all in real time, has led to SLAM being a very active area

of research with many existing techniques.

Many different sensor modalities can be used for SLAM, each with different trade-

offs. Some example sensors are shown in figure 1-1. For a power-constrained MAV,

the choice of sensor modality must take into account the size, weight, and power

requirement of the sensor. Sensors that perceive depth directly, such as LiDARs and

active depth cameras (i.e., time-of-flight or structured light cameras), reduce algo-

rithmic complexity because the depth or range of each pixel is generally provided

by the sensor itself and does not have to be computed downstream of the sensor

signal. However, LiDARs are large and power-consuming; structured light and time-

of-flight cameras have limited range and perform poorly in sunlight. On the other

hand, passive optical imaging cameras are able to provide high resolution data and

are low power, lightweight, and inexpensive. A stereo camera pair can be used to

to passively determine depths of pixels. The drawback of cameras is the increase in
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(a) Perspective lens (b) Fisheye lens (c) Catadioptric camera

Figure 1-2: Various lenses of different types and FOVs

computation required on the vehicle to process the data, because using these sensors

for navigation and localization requires solving the computer vision problem of associ-

ating points between images to infer depth and consequently estimate the pose of the

camera, and performing these inference procedures robustly and accurately is still an

open problem. In addition, inertial measurement units (IMUs), which measure linear

accelerations and angular rates, may be added to provide more information to the

algorithms, at the cost of additional complexity. Given these tradeoffs, this thesis

focuses on the exclusive use of cameras to perform the SLAM task, a problem known

as visual SLAM.

1.1.1 Why Omnidirectional Fisheye Cameras?

An important variable of vision systems is the camera’s field of view (FOV). The

FOV is the angular coverage of the scene in front of the camera and is determined

by the geometry of the image sensor and lens and their relative positions to each

other. Lenses of a wide range of FOVs exist, some of which are shown in figure

1-2. In addition to traditional perspective lenses that typically have smaller FOVs

less than 120 degrees, cameras that have more than 180 degrees FOV are known as

omnidirectional cameras. A common lens type used for omnidirectional cameras is

the fisheye lens, which exists for FOVs up to 280 degrees. A well-known alternative

is the catadioptric camera, which uses spherical or parabolic mirrors to cover nearly

360 degrees. While these cameras are able to provide very large FOVs, the large

FOVs come at the expense of extreme radial distortion, an optical aberration that

17



Figure 1-3: Example images with radial distortion (left) and without (right)

causes physically straight lines to appear curved in the image, which increases as a

function of the radial distance from the center of the image. Figure 1-3 shows an

example of radial distortion. Because simple camera models like the pinhole model

cannot model this distortion and rely on straight objects being straight in the image,

the history of computer vision has been focused on perspective cameras that have

minimal distortion. As a wide-angle image cannot be reasonably undistorted without

losing a significant portion of its FOV [58, 49], thus rendering them pointless, tradi-

tional computer vision algorithms have relied on using perspective cameras without

much consideration for wider FOVs. However, there are many potential benefits to

using wider FOVs for navigation tasks. Because visual SLAM relies on tracking the

environment around the camera, it is intuitively more desirable to have a wider FOV

so that more of the environment can be seen in the instantaneous image and over

longer periods of time as the camera moves. Seeing more of the environment would

not only provide more spatial information to the navigation algorithms, but also help

the algorithms be more tolerant to situations where portions of the scene are difficult

to track or become obscured. This suggests that omnidirectional cameras are ideal for

the visual SLAM task. Specifically, fisheye cameras are preferred for mobile robots

due to their compactness compared to the bulkiness of catadioptric cameras.

Despite the potential benefits of omnidirectional fisheye cameras, the research

surrounding visual SLAM has still been focused on narrow FOV cameras due to the

reliance of the task on traditional computer vision algorithms which have been de-
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Figure 1-4: Commercial products that use fisheye cameras for navigation

veloped for perspective cameras. All open-source, publicly available visual SLAM

frameworks rely on rectifying images, or shifting the distorted pixels to make straight

objects straight, which limits the usable FOV to well below 180 degrees [49]. Open-

source libraries like OpenCV [13] also provide implementations that only support

pinhole models and distortion models for rectification. In addition, there are signifi-

cantly fewer datasets available that provide images from fisheye cameras.

As a counterpoint, we consider the recent trend in commercially viable mobile

products that rely on visual navigation techniques like SLAM. Such products include

an autonomous video drone from Skydio, AR/VR headsets from Microsoft and Ocu-

lus, and a visual odometry tracking camera from Intel, shown in figure 1-4. All of

these products exclusively use fisheye cameras for navigation. As commercial prod-

ucts that must function in a wide variety of uncontrolled environments and conditions,

robustness is of crucial importance. Therefore, their use of fisheye cameras suggests

that wide-angle lenses are beneficial for visual navigation systems. This raises the

question of why the academic and open-source systems have not been more active in

trying to use this technology.

There are a few potential reasons for the discrepancy between the public trend and

commercial development. The first is a reluctance to adapt the traditional computer

vision algorithms used as building blocks for visual SLAM to support omnidirectional

cameras, due to a belief that the distortion will cause the algorithms to fail (i.e., for

feature correspondence algorithms), or that replacing the pinhole camera model is

challenging problem (i.e., for geometric algorithms). The second reason is a lack of

motivation to solve the challenges from the previous point, due to a lack of evidence
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showing the benefits of using omnidirectional fisheye cameras for the SLAM task.

Although the trend set by commercial products already suggests concrete reasons to

use wide-angle cameras, the goal of this thesis is to explicitly show that not only do

omnidirectional fisheye cameras improve the robustness of visual SLAM, traditional

algorithms still work with and are easily adaptable to omnidirectional fisheye cam-

eras. There is therefore little reason to use narrow FOV cameras for most computer

vision tasks, including the task of visual navigation, unless the task explicitly requires

detailed, high resolution imaging of a small portion of a scene.

1.2 Thesis Outline

The remainder of the thesis is structured as follows. Chapter 2 discusses the tech-

nical background of the foundational algorithms required to understand traditional

feature-based visual odometry and SLAM. Chapter 3 discusses related work in visual

navigation, for both traditional and omnidirectional cameras. The remaining chap-

ters will detail the work done to adapt the traditional computer vision algorithms to

work with omnidirectional fisheye cameras, and evaluate their performance compared

to narrow FOV cameras. Chapter 4 focuses on the Lucas-Kanade feature tracking al-

gorithm. Chapter 5 focuses on descriptor-based feature matching. Chapter 6 focuses

on the rest of the visual SLAM pipeline, specifically stereo matching, odometry, and

reconstruction. Finally, chapter 7 concludes the thesis.
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Chapter 2

Background

This chapter begins with an introduction and overview of the individual components

of the visual SLAM pipeline. Section 2.1 formulates the problem and discusses the

high-level structure of the pipeline and where each of the individual components fit

in to it. Section 2.2 introduces the feature correspondence problem, and is split

into two subsections; 2.2.1 describes the frame-to-frame incremental feature tracking

problem and the Lucas-Kanade algorithm, and 2.2.2 discusses the descriptor-based

feature matching problem. Section 2.3 introduces geometric concepts that connect

2D pixel space concepts to 3D space, in particular camera models and epipolar geom-

etry. Section 2.4 discusses the odometry problem, or frame-to-frame incremental pose

estimation, and the algorithms related to it. Section 2.5 discusses the reconstruction

problem, also known as mapping or depth estimation, including stereo matching,

a specific case of depth estimation. Finally, section 2.6 covers global optimization

techniques that attempt to solve for a globally consistent trajectory and map.

2.1 Visual Simultaneous Localization and Mapping

For a robot to navigate an environment containing obstacles, it typically needs to

have both its pose, or position and orientation in the world, and a map of the envi-

ronment around it. Once it has both of these, it can then plan collision-free paths to

a given goal location within the environment. Because the pose needs to be known
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for a map to be built around it, and the map needs to be known to localize a pose

relative to the map, both quantities need to be computed simultaneously. Visual si-

multaneous localization and mapping (SLAM) is the task of using cameras to perceive

the environment, and using the environment to localize the pose of the cameras while

building a 3D map of the environment. The challenge of performing this fundamen-

tally three-dimensional task using a sensor that only provides 2D images is the basis

of the field of computer vision. As such, visual SLAM relies on algorithms taken from

the broader study of computer vision to form an algorithmic foundation.

Visual SLAM techniques generally fall into two categories, feature-based (also re-

ferred to as indirect) or direct methods. Feature-based methods rely on extracting

a limited number of features, or small patches of the image containing high contrast

corners, lines, or blobs, associating them between frames, and using them as land-

marks for the rest of the pipeline. On the other hand, direct methods use raw pixel

values instead of features to directly solve for the relative transformation of the pose

of the camera between images by framing it as a non-linear least squares optimization

problem. The optimization problem solves for the optimal transform such that the

difference between brightness values of pixels in the original image and the same pixels

projected into the transformed frame (assuming known depth) is minimized. Feature-

based methods are more popular and have a longer history, but direct methods have

shown benefit from not needing the computationally expensive feature extraction step

and being able to use more of the image due to not being limited to where features are

extracted [29]. Despite this, feature-based methods are still more widely used (there-

fore more proven) because they are simpler to understand and analyze (compared to

a single large optimization problem), this thesis focuses on feature-based methods for

visual SLAM. However, the challenges of using fisheye cameras for both methods are

similar, so we expect the results to carry over to direct methods as well.

2.1.1 Problem Formulation

To formulate the feature-based visual SLAM problem, consider a robot moving through

an environment and capturing images with a camera system at discrete times 𝑘. At
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C𝑘 C𝑘+1 C𝑘+2

T𝑘,𝑘+1 T𝑘+1,𝑘+2

X𝑖 X𝑗
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x𝑘+1,𝑖

x𝑘,𝑗 x𝑘+1,𝑗 x𝑘+2,𝑗

Figure 2-1: Feature-based visual SLAM problem formulation. C𝑘 is the camera pose
at time step 𝑘, T𝑘,𝑘+1 is the transformation between the poses at time 𝑘 and 𝑘+1, X𝑖

is the 3D world coordinate of landmark 𝑖, and x𝑘,𝑖 is the observation of landmark 𝑖 by
the camera at time step 𝑘, projected through a camera model as a pixel coordinate.

time 𝑘, let the set of images taken so far by the camera system be 𝐼0:𝑘 = {𝐼0, ..., 𝐼𝑘}.

In the case of a stereo system, each image 𝐼𝑛 is actually a pair of images 𝐼𝑛,1 and 𝐼𝑛,2.

Let the coordinate frame of the robot be the coordinate frame of the camera or one

of the cameras.

The relative transformation between the poses of the camera at times 𝑘 and 𝑘− 1

can be represented as a rigid-body transformation T𝑘,𝑘−1 ∈ R4×4:

T𝑘,𝑘−1 =

⎡⎣R𝑘,𝑘−1 t𝑘,𝑘−1

0 1

⎤⎦ (2.1)

where R𝑘,𝑘−1 ∈ 𝑆𝑂(3) is a rotation matrix and t𝑘,𝑘−1 ∈ R3×1 is a translation vector.

Let the starting pose of the camera be the origin of the world coordinate frame. The

camera pose in the world frame at time 𝑘, C𝑘, can then be computed as follows:

C𝑘 = T𝑘,0 = T𝑘,𝑘−1C𝑘−1 =

x
𝑘∏︁

𝑛=1

T𝑛,𝑛−1 (2.2)

Consider a set of 𝑚 landmarks in the environment with 3D world coordinates

X1:𝑚 = {X1, ...,X𝑚} ⊂ R3×1. Let O𝑛 ⊆ X1:𝑚 be the set of landmarks observed by

image 𝐼𝑛, projected through a camera model as pixel coordinates x𝑛,On ⊂ R2×1.
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The visual SLAM problem can then be stated as follows. At every time 𝑘 > 0,

given the landmarks that are observed by both 𝐼𝑘−1 and 𝐼𝑘, which is Ok−1 ∩Ok, use

the projected pixel coordinates x𝑘−1,Ok−1∩Ok
in 𝐼𝑘−1 and x𝑘,Ok−1∩Ok

in 𝐼𝑘, as well as

optionally some of world coordinates Ok−1 ∩ Ok, to determine the transformation

T𝑘,𝑘−1 and subsequently the pose C𝑘. Given the poses, compute or update the land-

mark world coordinates Ok−1 ∩ Ok. An illustration of the problem formulation is

shown in figure 2-1.

2.1.2 Pipeline Overview

An overview of the feature-based visual SLAM pipeline is shown in figure 2-2. The

first part in the pipeline for feature-based systems is purely in the 2D image domain.

The first step is to extract features using a feature detector to efficiently find small

image patches that contain high contrast corners, lines, or blobs, and are robust to

changes in rotation, scale, and illumination. A deeper overview of feature detection

methods is given in section 2.2.1.

Once features are found in one image, the landmarks that those features represent

need to be found in successive images. This feature correspondence problem can be

solved in two ways: features can either be tracked into successive images, or matched

with features extracted in successive images. Feature tracking works by searching for

the feature in a neighborhood around its original location, while feature matching

compares features extracted independently from both images to find the most similar

matches. Details about feature tracking are provided in section 2.2.2, and details

about feature matching are provided in section 2.2.3.

In the case of a stereo visual SLAM pipeline, the same feature correspondence

techniques can be used to correspond features between the stereo pair and compute

depth for each feature, a task known as stereo matching. Once the correspondence is

found, the known (calibrated) transformation between the stereo pair can be used to

compute the depth of the features. Stereo depth estimation is a special case of the

reconstruction problem, which will be discussed in section 2.5.

Once feature correspondences between successive frames are known, there are
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Figure 2-2: Feature-based visual SLAM pipeline diagram

three methods to obtain the relative transform between the camera poses (known

as odometry), two of which require feature depths to be known. The first is using

2D-to-2D correspondences, which does not require depths and therefore can be used
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with a monocular SLAM system (without scale). If depths are known (i.e., with a

stereo pair), the information can be leveraged to compute the correct scale. The

second method for pose estimation is using 3D-to-2D correspondences, where 3D

coordinates of features stereo matched in one frame correspond to 2D pixel locations

in the other frame. The camera geometry can then be used to find a camera pose

that is consistent with the correspondences. The final pose estimation method uses

3D-to-3D correspondences, where 3D stereo matched features are used to align the

camera poses such that the errors in 3D space are minimized. However, stereo depth

estimation introduces large uncertainties in the depth direction, and these depth

errors have detrimental effects on the alignment of 3D points [63]. Thus, only the

2D-to-2D and 3D-to-2D cases will be considered, and are discussed in detail in section

2.4.

Once the relative poses between frames are known, the 3D structure of the scene

can be estimated, a task known as reconstruction or depth estimation. Using the

known camera poses, the camera geometry can once again be used to compute the

3D coordinates of features observed across multiple frames. The resulting map can

then be used in the next frame to compute odometry using 3D-to-2D correspondences,

and the process repeats. Reconstruction methods are discussed in detail in section

2.5.

The pipeline introduced so far is known as the task of visual odometry [63], where

the camera pose is estimated incrementally. Visual odometry is prone to drift because

poses are only calculated based on the previous frame so errors accumulate over

time, and the trajectory and map lack global consistency. An example of a global

consistency problem is the problem of loop closure, where a robot determines that

it has returned to a location previously visited. Due to drift, the current odometry

estimate will not be the same as the original pose. The past trajectory, as well as

the map, now have to be corrected so that the current pose matches the pose from

when the location was previously visited. There are two main techniques to correct

for global consistency, bundle adjustment and pose-graph optimization, which will be

introduced in section 2.6.
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2.2 Feature Correspondence

A fundamental computer vision problem, and the first step of any feature-based SLAM

pipeline, is determining where a point in one image appears in another. Given features

that are detected in one image, the feature correspondence task involves finding the

precise locations of those features in another image that was taken from a different

perspective. This feature correspondence is done not only for pairs of frames in a

temporal sequence, but also between two images in a stereo camera. This section

will first discuss the feature detection task, and then cover two methods to find

correspondences, tracking and matching.

2.2.1 Feature Detection

Features can only be recognized across different images if they are distinctive and

robust to rotation, scale, and lighting changes. The purpose of the feature detection

task is to propose image patches that meet this criteria, such as corners, edges, and

blobs. An overview of existing feature detectors will now be provided.

The earliest feature detectors were corner detectors that used image gradient-based

approaches. The Moravec corner detector [60], developed in 1980, found corners by

shifting local windows by a few pixels and finding ones that gave large changes in total

intensity. In particular, it computes the sum-of-squared-differences (SSD) between the

original window and shifted windows in cardinal directions (𝑢, 𝑣), where 𝑤(𝑥, 𝑦) is a

window function:

𝐸(𝑢, 𝑣) =
∑︁
𝑥,𝑦

𝑤(𝑥, 𝑦)[𝐼(𝑥 + 𝑢, 𝑦 + 𝑣) − 𝐼(𝑥, 𝑦)]2 (2.3)

Harris and Stephens [35] improved upon this approach in 1988 by deriving an

analytical approximation for the SSD cost using image gradients. By computing the

partial derivatives of the image 𝐼𝑥 and 𝐼𝑦 and using Taylor expansion, the following

approximation was derived:
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𝐸(𝑢, 𝑣) ≈
∑︁
𝑥,𝑦

𝑤(𝑥, 𝑦)[𝐼𝑥(𝑥, 𝑦)𝑢− 𝐼𝑦(𝑥, 𝑦)𝑣]2 =
[︁
𝑢 𝑣

]︁
A

⎡⎣𝑢
𝑣

⎤⎦ (2.4)

A =
∑︁
𝑥,𝑦

𝑤(𝑥, 𝑦)

⎡⎣ 𝐼𝑥(𝑥, 𝑦)2 𝐼𝑥(𝑥, 𝑦)𝐼𝑦(𝑥, 𝑦)

𝐼𝑥(𝑥, 𝑦)𝐼𝑦(𝑥, 𝑦) 𝐼𝑦(𝑥, 𝑦)2

⎤⎦ (2.5)

The matrix A is the second-moment matrix. If the Gaussian window 𝑤(𝑥, 𝑦)

contains a corner, 𝐸(𝑢, 𝑣) should have large variations over all directions of (𝑢, 𝑣),

so A should have two large eigenvalues. A function was then derived that used the

trace and determinant of A to determine the magnitude of the eigenvalues rather

than computing them directly, which is expensive. The resulting feature detector is

known as the Harris corner detector and is still a widely used feature detector. Shi

and Tomasi [76] later presented an improvement that calculated the minimum of the

two eigenvalues directly as a corner score, known as the Shi-Tomasi corner detector.

More recently, for applications that require real-time feature detection, the FAST

corner detector [69] was developed. FAST (Feature from Accelerated Segment Test)

considers a set of pixels in a circle around a candidate feature point. It performs a

binary test to determine if a set of 𝑁 contiguous pixels in the circle are all brighter

or darker than the candidate point, and the point is classified as a corner if the test

passes. The feature detector used by ORB [71] is based on the FAST corner detector,

and adds an orientation component. The Adaptive and Generic Accelerated Segment

Test (AGAST) [57] feature detector is also inspired by FAST and adds speed and

robustness improvements.

In addition to corners, blobs are also commonly used features. Methods to detect

blobs in images include Difference-of-Gaussians (DoG) and Determinant-of-Hessian

(DoH) approaches. The Difference-of-Gaussians algorithm involves subtraction of a

Gaussian blurred version of the image with another Gaussian blurred version with

a lower-variance Gaussian kernel. This is the feature detection algorithm used to

detect SIFT [53] features. The Determinant-of-Hessian algorithm involves computing

the determinant of the Hessian matrix, a matrix of second-order derivatives of the
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image, which also results in a blob and saddle point detector. This is the approach

used to detect SURF [9], KAZE [4], and AKAZE [64] features.

2.2.2 Feature Tracking

Now that features are detected in one image, the next step is to find those features

in subsequent images. One way to do this is to assume that the next image in the

sequence has not moved too much relative to the first one. This allows the features to

be tracked into the second image, by searching around a neighborhood of the original

locations of the features. The feature tracking task is also known as sparse optical

flow.

The most widely used feature tracking algorithm remains the Lucas-Kanade [55]

(LK) feature tracker. The Lucas-Kanade algorithm iteratively solves for an alignment

of an image patch (template) with another image such that the intensity difference

is minimized in a least-squares sense. As an optical flow algorithm, it assumes the

intensity is constant between frames. The tracking problem is formulated as a non-

linear optimization problem as follows, where 𝑊 is the template window (image patch

to be tracked) and 𝐼𝑡+1 is the new image to be tracked into:

𝑒 =
∑︁
x∈𝑊

[𝐼𝑡(x) − 𝐼𝑡+1(w(x;p))]2 (2.6)

The function w(x;p) is the tracking motion model, also called the warping func-

tion. It represents the space in which the template can be warped in order to align

to the new image. The vector p is the vector of warping parameters, and is the

variable that is solved for during the alignment optimization. If there are priors for

where a feature could potentially be (i.e., through the use of an IMU) the warping

parameters can be initialized before the optimization. Warping functions can range

in complexity which directly impacts the runtime of the optimization. The simplest

warping function is the translation model:

w(x;p) = x + b (2.7)
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The translation model is fast as it only has two parameters, but can only handle

pure translation with minimal rotation, scaling, and other forms of warping. To

optimize for an alignment over all forms of affine warping, the affine model can be

used:

w(x;p) = Ax + b (2.8)

where A is an affine transformation matrix. However, A introduces four more pa-

rameters so it is computationally expensive. In practice, for real-time applications,

the translation model is used as the appearance change between consecutive images

is small. This requires that the template be refreshed every frame or nearly every

frame so that alignment is done relative to a recent frame. As such, a feature could

start to drift over many frames, a potential drawback of the tracking approach.

Although the appearance change between frames is small, is it typically not small

enough for the LK algorithm described so far to converge to the correct solution,

especially at higher resolutions where the change in pixel location is greater for a given

motion. To solve this, a pyramidal approach [12] is used. The image is converted to

a pyramidal representation where the image is recursively downsampled in half. The

number of pyramids is selected based on the magnitude of expected camera motion.

The LK algorithm is first performed on the highest pyramid level (lowest resolution)

which gives a rough alignment but handles large offsets. The result from this is then

used as the prior for the next highest pyramid level, and the alignment is repeated as

such iteratively, until the lowest level which gives a full resolution alignment.

Feature selection from the detection step can also impact tracking performance.

The Shi-Tomasi corner detector introduced previously has been shown to select good

features for tracking, and as such is widely used in combination with the Lucas-

Kanade algorithm, a combination known as the Kanade-Lucas-Tomasi (KLT) feature

tracking algorithm. The KLT algorithm will be the feature tracking algorithm eval-

uated on fisheye cameras in this thesis.
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2.2.3 Feature Matching

The other method for feature correspondence is feature matching. Contrary to track-

ing, which only requires detection in the first frame, feature matching requires detec-

tion of features in all frames. Features in one frame are compared to features from

another, and the most similar match is used as the correspondence.

To match features robustly, features must be encoded in a way that is invariant

to changes in scale, rotation, illumination, etc. Descriptors are vectors that are

computed for each feature, and are compared to each other using vector distances.

Once descriptors are computed, matches can be found in a few ways. The brute-

force method involves comparing every feature in the first image for each feature in

the second image, and returning the closest one in the descriptor vector space as

the match. Nearest-neighbor methods improve efficiency by using data structures to

quickly find approximate nearest neighbors in the descriptor vector space.

Designing descriptors that are not only robust to various changes but also com-

pact and fast to compute has been an active computer vision problem with many

existing approaches. Before descriptors, features were compared using simple SSD

methods. In 1999, Lowe presented the scale-invariant feature transform (SIFT) [53]

detector and descriptor. The SIFT detector not only detects features but also ensures

invariance to scale and rotation by detecting at various image scales and assigning

an orientation to each feature using local image gradient directions. Once these aug-

mented feature points, known as keypoints, are found, a 128-dimensional descriptor

is computed. A set of 16 4x4 windows around the keypoint is used and gradient

magnitudes and orientations are calculated for each window and stored into an 8-bin

histogram. The histogram magnitudes are then thresholded and normalized for illu-

mination invariance, and the orientations are subtracted by the keypoint orientation

for rotation invariance.

Since SIFT, similar approaches using oriented gradient histograms, like Gradient

Location and Oriented Histogram (GLOH) [59], Histogram of Gradients (HoG) [18],

and DAISY [81], have been introduced. The speeded up robust features (SURF) [9]
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detector and descriptor, introduced in 2006, is partly inspired by SIFT and is several

times faster. It uses Haar wavelets to compute keypoint orientations and descriptors.

The sum of Haar wavelet responses in the horizontal and vertical directions is used

to determine the orientation. To compute the descriptor, Haar wavelet responses

are extracted from an oriented set of square sub-regions surrounding the keypoint,

yielding a 64-dimensional descriptor. The KAZE [4] descriptor builds on SURF by

using nonlinear diffusion filtering as its scale space.

The descriptors introduced so far have all used continuous real values to encode

features, and therefore use Euclidean distances to evaluate descriptor similarity. More

recently, descriptors have been introduced that use binary vectors, allowing for much

faster computation and distance comparison, as well as more efficient memory us-

age. The Binary Robust Independent Elementary Features (BRIEF) [15] descriptor

was introduced in 2010. To compute a BRIEF descriptor, the feature patch is first

smoothed with a Gaussian. Pairs of pixels are then selected, and intensity compar-

isons are done on these pairs. The binary comparison results (greater or less than)

are written to a binary string and returned as the descriptor vector. For the matching

process, Hamming distance is used instead of Euclidean distance, allowing for much

faster feature comparison.

Shortly after the introduction of BRIEF, two more noteworthy binary descriptors

were introduced, Oriented FAST and Rotated BRIEF (ORB) [71] and Binary Ro-

bust Invariant Scalable Keypoints (BRISK) [45], that both add rotation and scale

invariance, which BRIEF lacked, using similar approaches. ORB uses an augmented

FAST detector that detects on multiple scales and computes orientation. Descriptors

are then computed for the ORB keypoints by rotating the BRIEF algorithm to the

keypoint orientation. On the other hand, BRISK uses the AGAST detector. For

descriptors, it uses a custom deterministic sampling pattern for binary comparison,

that is also pre-scaled and pre-rotated according to the keypoint scale and orienta-

tion. In addition to ORB and BRISK, several other binary descriptors have also

been introduced, such as Accelerated KAZE (AKAZE) [64], a faster, binary version

of KAZE that rivals ORB and BRISK, Fast Retina Keypoint (FREAK) [3], a binary
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descriptor inspired by the human retina, and Learned Arrangements of Three Patch

Codes (LATCH) [47], which uses comparison of patch triplets.

Compared to feature tracking, which has the advantage of being fast, feature

matching has the advantage of being able to handle large motions. It is also less

prone to drift because features are redetected in every frame. The drawbacks are

that feature detection in every frame is computationally expensive, and the matching

algorithm also has high computational complexity (quadratic time for brute force

matching). As both feature tracking and matching are viable feature correspondence

methods each with their own tradeoffs, this thesis will evaluate both approaches.

2.3 Camera Geometry

The feature-based algorithms discussed so far are all pixel space algorithms, as in

they only require images to function, without knowledge of the camera’s physical at-

tributes. In order to use any information in the pixel space to infer information about

the physical world, we must consider the relationships between pixel coordinates and

physical values. This section will discuss concepts that provide these relationships.

2.3.1 Camera Models

The central concept that connects pixel space to 3D space is the camera model.

Camera models represent the relationship between light rays originating from points

in the physical world and their projected locations on the image sensor. Using a

camera model, a pixel in the image can be mapped to a single ray originating from

the camera origin, such that the pixel value captures the appearance of the physical

object that the ray hits. Similarly, 3D points can be projected onto the image sensor

plane using a camera model to determine the pixel coordinate at which a 3D point

will appear. Many camera models exist to model different types of lenses. Three

types of models will be discussed: the pinhole model, which is the simplest ideal

camera model, the unified model, a more complex model that can represent wide-

angle cameras, and the double sphere model, a modern camera model that has been
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Figure 2-3: Pinhole camera model. A 3D coordinate X is projected onto an image
plane at a distance of focal length 𝑓 from the camera origin C as pixel coordinate x.

shown to model wide-angle fisheye lenses well, which is used in this thesis.

Pinhole Camera Model

The traditional and simplest way to model the relationship between 3D coordinates

and pixel coordinates is with the pinhole camera model. This model represents an

ideal pinhole camera, where light can only enter a small hole and project onto the

sensor, as shown in figure 2-3. Because of the simple geometry in this camera model

due to all rays remaining straight, simple linear equations can be used to describe the

pinhole camera model, derived using similar triangles. Let 𝑋, 𝑌 , and 𝑍 represent 3D

coordinates of a point, and 𝑢 and 𝑣 represent the pixel coordinates. The parameters of

the model are the focal lengths, 𝑓𝑥 and 𝑓𝑦, which represent the distance of the sensor

from the pinhole, and the principle points, 𝑐𝑥 and 𝑐𝑦, which represent the pixel offset

from the sensor center to move the pixel coordinate origin to the corner of the image.

Using similar triangles as visualized in figure 2-3, the mapping from 3D coordinates

to pixel coordinates (projection function) is as follows:

⎡⎢⎢⎢⎣
𝑢

𝑣

1

⎤⎥⎥⎥⎦ ∝

⎡⎢⎢⎢⎣
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝑋

𝑌

𝑍

⎤⎥⎥⎥⎦ (2.9)

The three-dimensional vector on the left hand side of the equation representing
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a 2D pixel coordinate is in homogeneous coordinates, meaning that it is equal to

the right-hand side up to a scalar factor. To calculate 𝑢 and 𝑣, the right-hand side

product is obtained, and the resulting vector is scaled so that the third coordinate

is one. For this equation, this effectively means that the products of the 𝑋 and 𝑌

coordinates with 𝑓𝑥 and 𝑓𝑦 respectively are divided by the 𝑍 coordinate, which is

the same result obtained using the similar triangles derivation. The unprojection

function, which maps a pixel coordinate to a 3D ray from the camera origin, can be

obtained by inverting the projection matrix.

This model is widely used due to its simplicity and ability to be represented as a

simple matrix. However, it fails to capture any inevitable distortion caused by real

lenses that are not an infinitesimal pinhole. Typically, the larger the FOV of the lens,

the stronger the distortion effect. Therefore, the pinhole model is usually accompanied

by a distortion model, which allows the distortion to be rectified such that the pinhole

model is satisfied. However, it can be seen that for FOVs at or beyond 180 degrees, the

images cannot be represented by the pinhole model as those rays cannot be projected

onto the image plane while staying straight. The images are therefore substantially

cropped to an FOV less than 180 degrees by the distortion model when rectifying the

image. In practice, even with distortion models, the pinhole model is suboptimal for

FOVs greater than 120 degrees [49]. Therefore, to model wide-angle lenses such as

fisheye, more complex camera models must be considered.

Unified Camera Model

The unified camera model [27] has been shown to model omnidirectional cameras well,

in particular for catadioptric cameras for which it is typically used. In this model, a

3D point is first projected onto a unit sphere, and then projected onto the sensor with

a pinhole model, as shown in figure 2-4. The use of the sphere allows FOVs beyond

180 degrees to be modeled.

The unified camera model has one additional parameter, 𝛼, where 𝛼
1−𝛼

represents

the offset of the unit sphere from the pinhole camera origin. The projection function

is defined as follows:
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Figure 2-4: Unified camera model. The 3D coordinate X is projected onto a unit
sphere, and then projected into a pinhole model with origin C′ offset by 𝛼

1−𝛼
as pixel

coordinate x.

⎡⎢⎢⎢⎣
𝑢

𝑣

1

⎤⎥⎥⎥⎦ ∝

⎡⎢⎢⎢⎣
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

𝑋

𝑌

𝛼
√
𝑋2 + 𝑌 2 + 𝑍2 + (1 − 𝛼)𝑍

⎤⎥⎥⎥⎦ (2.10)

The unprojection function is defined as follows:

⎡⎢⎢⎢⎣
𝑋

𝑌

𝑍

⎤⎥⎥⎥⎦ =
𝜉 +

√︀
1 + (1 − 𝜉)2𝑟2

1 + 𝑟2

⎡⎢⎢⎢⎣
1
𝑓𝑥

0 − 𝑐𝑥
𝑓𝑥

0 1
𝑓𝑦

− 𝑐𝑦
𝑓𝑦

0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝑢

𝑣

1

⎤⎥⎥⎥⎦−

⎡⎢⎢⎢⎣
0

0

𝜉

⎤⎥⎥⎥⎦ (2.11)

𝑟2 =

(︂
𝑢− 𝑐𝑥
𝑓𝑥

)︂2

+

(︂
𝑣 − 𝑐𝑦
𝑓𝑦

)︂2

(2.12)

𝜉 =
𝛼

1 − 𝛼
(2.13)

Note that for 𝛼 = 0, the model reverts back to the pinhole model. The added

nonlinearity of the model introduces complications to many existing algorithms, as

the projection function is no longer a linear mapping. Although the unified camera

model is able to model omnidirectional cameras, it does not fit fisheye lenses perfectly

and still requires an additional distortion model.
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𝑦𝑥
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𝛼

1−𝛼
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𝜉

X

x

Figure 2-5: Double sphere camera model. The 3D coordinate X is consecutively
projected onto two unit spheres offset by 𝜉, and then projected into a pinhole model
with origin C′ offset by 𝛼

1−𝛼
from the second sphere as pixel coordinate x.

Double Sphere Camera Model

The double sphere camera model [87] is a modern camera model that is designed to

model wide-angle fisheye lenses. It builds on the unified camera model by adding a

second unit sphere offset from the first sphere, as shown in figure 2-5. The 3D point

is consecutively projected onto the two spheres, and then projected onto the sensor

using a pinhole model offset from the second sphere.

The double sphere camera model one additional parameter from the unified camera

model, 𝜉, which is the offset between the two spheres. The projection function is

defined as follows:

⎡⎢⎢⎢⎣
𝑢

𝑣

1

⎤⎥⎥⎥⎦ ∝

⎡⎢⎢⎢⎣
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

𝑋

𝑌

𝛼
√︀
𝑋2 + 𝑌 2 + (𝜉𝑑 + 𝑍)2 + (1 − 𝛼)(𝜉𝑑 + 𝑍)

⎤⎥⎥⎥⎦ (2.14)

𝑑 =
√
𝑋2 + 𝑌 2 + 𝑍2 (2.15)

The unprojection function is defined as follows:
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𝑌

𝑍

⎤⎥⎥⎥⎦ =
𝑚𝑧𝜉 +

√︀
𝑚2

𝑧 + (1 − 𝜉)2𝑟2

𝑚2
𝑧 + 𝑟2

⎡⎢⎢⎢⎣
1
𝑓𝑥

0 − 𝑐𝑥
𝑓𝑥

0 1
𝑓𝑦

− 𝑐𝑦
𝑓𝑦

0 0 𝑚𝑧

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝑢

𝑣

1

⎤⎥⎥⎥⎦−

⎡⎢⎢⎢⎣
0

0

𝜉

⎤⎥⎥⎥⎦ (2.16)

𝑟2 =

(︂
𝑢− 𝑐𝑥
𝑓𝑥

)︂2

+

(︂
𝑣 − 𝑐𝑦
𝑓𝑦

)︂2

(2.17)

𝑚𝑧 =
1 − 𝛼2𝑟2

𝛼
√︀

1 − (2𝛼− 1)𝑟2 + 1 − 𝛼
(2.18)

The double sphere model is currently the state-of-the-art for modeling fisheye

lenses. Therefore, this thesis will exclusively use this model for its analysis of SLAM

algorithms. Setting 𝛼 and 𝜉 to zero collapses the model into a pinhole model, allowing

for easy comparison of fisheye and perspective cameras using the same model.

Radial Distortion Analysis

Now that fisheye images can be modeled accurately using the double sphere model,

we can analyze the radial distortion properties of fisheye cameras more in depth. To

do this, it is important to first understand and model the effect radial distortion has

on images. Figure 2-6 illustrates how physically straight lines become curved as they

are projected through a lens onto the image plane. The effect arises from the image

magnification decreasing with distance from the optical axis, causing parts of the

image at larger radial distances to be compressed inwards. Physically straight lines

that are not in the center of the image are projected onto different radial distances in

the image, causing parts of the line to be curved inwards towards the image center.

The effect is radially symmetric because of the physical symmetry of camera lenses.

To analyze how much distortion is present in different parts of the image, we can

examine the angular resolution, which is the ray angle covered by one pixel, in the

radial and tangential directions as a function of distance from the center of the image.

A distortion-free image region near the center would have equal radial and tangential

angular resolutions, while a distorted region would have unequal resolutions, rep-

resenting compression along a direction. The difference in ray angles between two

38



𝑥

𝑦

𝑧

Figure 2-6: Diagram showing geometry of radial distortion. The corners of the square
(red rays) are farther from the optical axis than the midpoints of the edges of the
square (blue ray) so they are compressed inward by the lens, curving the projection.

Figure 2-7: Angular resolution in radial and tangential directions (left) and local
aspect ratio between the two directions (right) as a function of radial distance for
cameras of various FOVs

consecutive pixels (in degrees per pixel) is used to define the angular resolution. Fig-

ure 2-7 shows a plot showing the angular resolution over distances from the image

center, in both the radial and tangential directions, for cameras of various FOVs in-

cluding both fisheye and perspective, modeled with the double sphere model. It also

shows a plot of the aspect ratio of angular resolutions in the radial direction over the

tangential direction, which corresponds to the amount of warping. It can be seen that

the distortion causes the image to be compressed in the radial direction. Although

the amount of warping increases as the FOV increases, the warping for wide FOVs is

not substantially greater than that of pinhole models until the outer portions of the
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Figure 2-8: Epipolar geometry. C1 and C2 are the camera origins, X is a 3D point
projected into both cameras as x1 and x2, and e1 and e2 are the epipoles. The lines
joining e1 to x1 and e2 to x2 are the epipolar lines, and the plane formed by C1, C2,
and X is the epipolar plane.

image. This provides the initial insight that most of the image is still very usable in

terms of distortion. It is therefore potentially beneficial to not crop away the usable

outer portions of the image, as is inevitably done when rectifying fisheye images to a

pinhole model in order to remove radial distortion.

2.3.2 Epipolar Geometry

When two cameras view 3D points from two distinct poses, there are geometric prop-

erties that describe how the pixel coordinates in both cameras for those 3D points

are related, known as epipolar geometry. This is useful both for stereo matching and

odometry, as these geometric relations constrain where feature correspondences can

be found, given a transformation between the two cameras. This information can be

used to reduce the search space for feature correspondence, or perform filtering of

incorrect feature correspondences.

Epipolar geometry is well-established for the pinhole camera model. Figure 2-8

depicts two pinhole cameras with known poses viewing a 3D point X. Let x1 and x2

be the 3D coordinates of X projected onto the image plane of both cameras with unit

focal length. Suppose x1 is known (i.e., an arbitrary point detected with a feature
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detector), and X and x2 are unknown. We know that X must lie along the ray defined

by the line between the camera origin and x1. If we sweep the potential positions

of X along this ray and project them into the second camera, we obtain a line on

the second camera’s image plane, known as the epipolar line. The true value of x2

therefore lies on this line.

To express epipolar constraints mathematically, let C1 and C2 be the camera

origins for camera 1 and 2 respectively. Consider two more 3D coordinates in camera

1 and 2 respectively, e1 and e2, defined by the projection of C2 onto the first camera

plane and C1 onto the second camera plane, respectively. These points are effectively

the intersection of the line joining the two camera origins with the image planes. It

can be seen that the epipolar line for camera 2 (containing x2) must pass through e2,

and vice versa.

Alternatively, we can construct a plane that is formed by C1, C2, and the ray

between C1 and x1. Because X is on this ray, the plane is formed by C1, C2, and X.

This plane is known as the epipolar plane. The intersection of the epipolar plane with

the second camera’s image plane is the epipolar line for camera 2, and vice versa.

We can define the epipolar plane using a normal vector. To define the plane in

the frame of the first camera, let x′
1 be x1 expressed in the first camera’s coordinate

frame, in normalized image coordinates, obtained by scaling the unprojected ray such

that 𝑍 = 1 so that it is effectively the projection onto an image plane at unit focal

length. Note that normalizing image coordinates requires that 𝑍 > 0, so this applies

only to pinhole models. Let R and t represent the rotation matrix and translation

vector to transform a point from camera 1’s frame into camera 2’s frame. In the

first camera’s frame, C2 can be expressed as t′ = −R𝑇 t. We can therefore express

the epipolar plane normal vector y1 in the first camera’s frame as the cross product

between t′ and x′
1:

y1 = [t′]×x
′
1 (2.19)

where [t′]× is the matrix representation of the cross product for ease of notation. We
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now want to express y1 in camera 2’s frame so we can represent the epipolar constraint

in the second camera’s image. We can move the normal vector y1 along the plane

such that it now originates from the second camera’s origin, and then rotate it into

the second camera’s coordinate frame using R. The epipolar plane normal vector in

the second camera’s coordinate frame is then defined as:

y2 = R[t′]×x
′
1 (2.20)

The epipolar constraint dictates that any x2 on the second camera’s image plane

must lie on this epipolar plane. If we express x2 in camera 2’s coordinate frame as

x′
2, then any x′

2 and y2 must be perpendicular. The epipolar constraint can then be

expressed as:

x′
2
𝑇
y2 = x′

2
𝑇
R[t′]×x

′
1 = x′

2
𝑇
Ex′

1 = 0 (2.21)

The matrix E = R[t′]× is known as the essential matrix [36]. It is a key component

of computer vision that relates points from two cameras using epipolar geometry. If

the transformation between two camera frames is known, the essential matrix can

be calculated, and the epipolar constraints between both images can be used. For

example, if two points x′
1 and x′

2 are found by a feature correspondence algorithm, the

constraint can be used to determine if the correspondence is valid. This is particularly

useful for filtering stereo matches where the transformation between the stereo pair

is known.

For odometry, the camera poses are not known yet, so epipolar geometry cannot

be used immediately. However, just as knowing the frame transformation defines

the essential matrix and sets constraints on feature correspondences, the reverse also

applies, where a set of proposed feature correspondences can be used to estimate

an essential matrix, and subsequently the relative rotation and translation. This

both gives an odometry estimate and sets epipolar constraints for the remaining

correspondences. The method for this is described in detail in the next section.

Although the above derivation is based on the pinhole model, the concept can be
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generalized to any camera model. Although image planes (and therefore normalized

image coordinates) can no longer be used, the points x1 and x2 do not need to

represent points on the image plane; they can simply represent rays from the camera

origins (which are found using the camera model) and the rest of the epipolar geometry

derivation follows identically. Epipolar planes no longer project onto image planes as

epipolar lines, but rather into the nonlinear camera models as epipolar curves. This

is the key observation that allows fisheye camera models to be used on the remaining

algorithms to be discussed.

2.4 Odometry

Now that feature correspondences between two frames are found, the camera geometry

concepts can be used to determine the transformation between the two camera poses,

known as the odometry task. Depending on whether a stereo camera is used or if

pre-reconstructed points already exist, 2D-2D or 3D-2D approaches can be used.

2.4.1 2D-2D Correspondence

If only 2D feature coordinates are known (i.e., for a monocular system), 2D-2D cor-

respondence methods must be used. The method involves using epipolar geometry

to solve for an essential matrix from the point correspondences using a linear sys-

tem of equations. The essential matrix can then be used to recover the rotation and

translation up to scale.

Recall the epipolar constraint, where x1 and x2 are normalized image coordinates

(assuming pinhole model) in images 1 and 2 respectively, and E is the essential matrix:

x2
𝑇Ex1 = 0 (2.22)

x1 =
[︁
𝑢1 𝑣1 1

]︁𝑇
(2.23)

x2 =
[︁
𝑢2 𝑣2 1

]︁𝑇
(2.24)
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E =

⎡⎢⎢⎢⎣
𝑒11 𝑒12 𝑒13

𝑒21 𝑒22 𝑒23

𝑒31 𝑒32 𝑒33

⎤⎥⎥⎥⎦ (2.25)

This constraint can be rewritten as:

e · ̃︀x = 0 (2.26)

e =
[︁
𝑒11 𝑒12 𝑒13 𝑒21 𝑒22 𝑒23 𝑒31 𝑒32 𝑒33

]︁𝑇
(2.27)

̃︀x =
[︁
𝑢2𝑢1 𝑢2𝑣1 𝑢2 𝑣2𝑢1 𝑣2𝑣1 𝑣2 𝑢1 𝑣1 1

]︁𝑇
(2.28)

To solve for e uniquely, it can be seen that at least eight feature correspondences

(̃︀x) are required. This is known as the eight-point algorithm [50]. In 2004, Nistér

proposed the five-point algorithm [62], which is able to solve for the essential matrix

using only five correspondences, by adding additional constraints based on properties

of the essential matrix. This algorithm is widely used as the state-of-the-art method

for estimating the essential matrix.

Because the algorithm only requires five correspondences and there is typically a

much larger number of correspondences, the random sample consensus (RANSAC)

algorithm [23] is applied to make the estimation robust to outliers. RANSAC involves

randomly sampling a subset from a dataset, fitting a model, and counting the number

of inliers that agree with the fitted model. The process is repeated iteratively and the

model with the largest number of inliers is returned. In this case, five correspondences

are randomly selected, the five-point algorithm is used to calculate an essential matrix,

and the number of remaining correspondences that obey the epipolar constraint set

by this essential matrix (i.e., x2
𝑇Ex1 is less than a threshold) is used as the number

of inliers. The essential matrix that results in the most inliers is used. In addition, if

feature tracking is used as the feature correspondence method, this can also be used

to detect tracking failures by removing tracks that are outliers.

To recover the rotation matrix R and translation vector t from the essential ma-

trix, singular value decomposition is used. Given the singular value decomposition
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E = USV𝑇 , the four solutions for R and t′ are:

R = U(±W𝑇 )V𝑇 (2.29)

t′ = U(±W𝑇 )SU𝑇 (2.30)

W𝑇 =

⎡⎢⎢⎢⎣
0 ±1 0

∓1 0 0

0 0 1

⎤⎥⎥⎥⎦ (2.31)

As there are four potential solutions, an additional chirality [37] check is necessary.

The check involves triangulating correspondences into a 3D point (see section 2.5 for

details) using the proposed camera poses, and checking if that point is visible by

both cameras. For a pinhole model, the check is simply if the 𝑧 coordinate in the

coordinate frame of each camera is positive. For other camera models, the model

itself must be used to see if the reprojection is valid. The solution with the most

valid correspondences is used as the pose estimate.

The recovered pose is only correct up to scale, as there is no way to determine

metric scale from 2D information only (i.e., objects can be large and far or small and

close and appear the same in the image). That is, R will be correct, but t will be a

unit vector in the direction of the motion. To determine the scale, information must

be known about the depths of the points, which is one of the challenges of monocular

SLAM systems. To perform the odometry task with the correct scale, an IMU can

be added, which is outside the scope of this thesis, or a stereo camera can be used by

adding second camera with a known offset.

2.4.2 3D-2D Correspondence

If 3D information is known about the points in the first frame, either through stereo

depth estimation or reconstruction from previous frames, 3D-2D correspondence meth-

ods can be used to determine the odometry for the second frame using its 2D pixel

coordinates. The method involves finding the best camera pose such that the error

between the 3D points reprojected into the image and their corresponding pixel coor-
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Figure 2-9: P3P Problem Formulation

dinates is minimized. This is known as the perspective-n-point (PnP) problem. The

problem can be formulated as follows, where X𝑖 is a 3D point, x𝑖 is its corresponding

feature pixel coordinate in the frame that observes it, T is the pose (transformation

matrix) of the frame to be solved for, and C(X) is the camera model:

T* = arg min
T

𝑛∑︁
𝑖

‖x𝑖 −C(TX𝑖)‖2 (2.32)

The PnP problem is another classic computer vision problem with applications in

many other fields as well. In particular, the P3P problem, the minimal form requiring

three correspondences, has a long history with many approaches. The first solution

was derived in 1841 by Grunert [30] for the application of photogrammetry, which

formulated the solution geometrically as follows, as shown in figure 2-9. Let 𝑃 be the

origin of the camera, and 𝐴, 𝐵, and 𝐶 be the 3D world points, which forms three

triangles 𝑃𝐴𝐵, 𝑃𝐵𝐶, and 𝑃𝐴𝐶. Using the law of cosines:

|𝑃𝐴|2 + |𝑃𝐵|2 − 2|𝑃𝐴||𝑃𝐵| cos∠𝐴𝑃𝐵 = |𝐴𝐵|2 (2.33)

|𝑃𝐵|2 + |𝑃𝐶|2 − 2|𝑃𝐵||𝑃𝐶| cos∠𝐵𝑃𝐶 = |𝐵𝐶|2 (2.34)

|𝑃𝐴|2 + |𝑃𝐶|2 − 2|𝑃𝐴||𝑃𝐶| cos∠𝐴𝑃𝐶 = |𝐴𝐶|2 (2.35)
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The three angles are known from the corresponding normalized image coordinates

(assuming pinhole), and the system of equations can be solved. The solution leads

to four feasible solutions for the camera pose 𝑃 [22], so a fourth point can be used to

disambiguate the solution by choosing the pose that leads to the lowest reprojection

error for that point.

Several advancements have been made to the PnP problem in the last 100 years

[22, 23, 28, 66, 25, 44, 40], all of which seek to improve computational speed and

numerical stability. A summary was presented by Haralick [34] in 1991. In particular,

in 1981, Fischler and Bolles [23] extended the P3P algorithm to an arbitrary number

of correspondences by introducing the RANSAC algorithm, which has since then been

the standard approach for PnP. The approach consists of running RANSAC on top of

a P3P algorithm (with a fourth point to disambiguate), finding the inliers for the best

solution, and finally running an optional non-linear optimization over the inliers to

refine the solution. Other PnP approaches that support arbitrary values of 𝑛 include

Quan and Lan’s method [66] and Lepetit’s EPnP [44].

Up until recently, the state-of-the-art algorithm has been Gao’s approach to P3P

[25], who derived an analytical algebraic solution as well as a complete solution clas-

sification. It has been widely adapted due to its robustness and is currently the

implementation used in OpenCV [13]. Recently, the Lambda Twist [65] P3P algo-

rithm was introduced, which achieved state-of-the-art performance with an increase

in speed and numerical stability by several orders of magnitude compared to previous

methods. The Lambda Twist algorithm combined with RANSAC will be the PnP

algorithm used in this thesis.

All of the existing PnP implementations take normalized image coordinates as 2D

inputs, and therefore rely on the use of the pinhole model. This thesis will generalize

the algorithms to support all camera models by observing that only rays are required,

not image coordinates, so any unprojection function can be used.

To use the 3D-2D correspondence method, 3D points are required. They can

be obtained through stereo matching or reconstruction using poses from previous

frames. In the monocular case, reconstructed 3D points from previous frames are
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used. For the first two frames 2D-2D correspondences are used to obtain the initial

pose, then reconstruction and 3D-2D odometry are used in alternating fashion for

subsequent frames. The next section will discuss algorithms used for both stereo and

frame-to-frame reconstruction.

2.5 Reconstruction

The process of estimating the structure of a scene, both for building a map and for

pose estimation relative to that map (i.e., PnP), as well as stereo depth estimation,

is known as reconstruction or depth estimation. The task involves taking a set of 2D

images that all observe a 3D scene from different known poses, and estimating the

3D structure of that scene. There are two main types of reconstruction, sparse and

dense reconstruction. Sparse reconstruction involves estimating the 3D coordinates

of individual sparse features independently and building a 3D point cloud of those

features, and will be the type of reconstruction used in this thesis. Dense reconstruc-

tion involves computing the full surface geometry of a scene using voxels or meshes,

and is outside the scope of this thesis.

To estimate the depth of a point, it must be observed by at least two frames with

known poses. The 3D coordinate of the point can then be triangulated by unprojecting

the 2D observations into rays and finding the intersection of those rays. In the case

of frame-to-frame reconstruction, the past odometry estimates are used as the poses.

The features are then reconstructed and used for the odometry estimate for the next

frame, and so on. For stereo reconstruction, the pose transformation between the two

cameras are known from calibration.

Ideally, the unprojected rays would intersect. However, because of noise, feature

correspondence uncertainty, and imperfect pose estimation and camera model cali-

bration, they rarely intersect perfectly. The simplest, most common method to obtain

a close result is using the direct linear transformation (DLT) [1] algorithm which is

solved linearly. Let x =
[︁
𝑢 𝑣 1

]︁𝑇
be the observed image point in normalized image

coordinates (assuming pinhole) on one of the images, T be the pose matrix of the
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camera that transforms 3D points in world frame to the camera’s frame, and X be

the homogeneous 3D coordinates of the point to triangulate. Because x represents

the point on the image plane with a focal length of 1, it is effectively a ray with a

𝑧-coordinate of 1, so the following holds, where 𝑤 is an unknown scale factor and t𝑇𝑖

is the 𝑖th row of T:

TX = 𝑤x = 𝑤
[︁
𝑢 𝑣 1

]︁𝑇
(2.36)

t𝑇1X = 𝑤𝑢 (2.37)

t𝑇2X = 𝑤𝑣 (2.38)

t𝑇3X = 𝑤 (2.39)

The following can then be derived by rearranging:

(𝑢t𝑇3 − t𝑇1 )X = 0 (2.40)

(𝑣t𝑇3 − t𝑇2 )X = 0 (2.41)

These linear equations can then be stacked for every image that observes X and

written in matrix form to obtain an equation of the form AX = 0, where A is a

2𝑛×4 matrix for 𝑛 images. Because the rays will not intersect the triangulated point

perfectly, the equation will not be satisfied perfectly, so a least-squares solution that

minimizes ‖AX‖ can be obtained with methods like singular value decomposition.

This method is simple and fast to compute for small numbers of observing frames.

In particular, for two images in the case of stereo triangulation or chirality checks

for essential matrix estimation, the equation only needs to be solved for a 4 × 4

matrix so it is very efficient. However, for larger numbers of frames, in the case of

triangulating a point from many observing frames in a sequence, the matrix can get

very large. Another solution is to take the midpoint of the rays, which minimizes

the distance of the point from the rays in a least-squares sense. Again, let X be the

point to be triangulated in homogeneous coordinates, T𝑖 be the pose matrix of the
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𝑖th observing camera, and x̂ be the unit ray of the normalized image coordinate x (or

unprojected ray for non-pinhole models). The midpoint triangulation problem can

then be formulated as follows:

X* = arg min
X

𝑛∑︁
𝑖

‖T𝑖X− x̂x̂𝑇T𝑖X‖2 (2.42)

Observe that the term that is minimized is simply the distance of the triangulated

point to its projection onto the observing rays, which gives the midpoint. If we now

let A𝑖 = T𝑖 − x̂x̂𝑇T𝑖 and A =
∑︀𝑛

𝑖 A
𝑇
𝑖 A𝑖, the problem can be rewritten as follows:

X* = arg min
X

𝑛∑︁
𝑖

(A𝑖X)𝑇 (A𝑖X) = arg min
X

X𝑇AX (2.43)

The value of X* can then be obtained by computing the eigenvector for the small-

est eigenvalue of A. Because A is now a sum of matrices, it is always a 4 × 4 matrix

and can be solved efficiently regardless of the number of observing frames. In addi-

tion, because it only requires unit rays unprojected from the 2D observations, any

camera model can be used.

In the case of frame-to-frame reconstruction, the poses need to have sufficient

translation relative to the distance to the reconstructed points. That is, the observing

rays need to view the points from angles that are sufficiently different, otherwise the

uncertainty in depth estimation will be too large. Therefore, it is necessary to have

a threshold on the angular coverage of the rays before a point can be reconstructed.

This is the same problem as depth uncertainty for stereo cameras, with points at

large distances compared to the stereo baseline (distance between stereo pair) having

large uncertainty.

Although the methods described earlier work well, using the midpoint of the rays

as the solution does not account for the distances of the cameras to the point; closer

cameras have more certainty about the location of a point so should be weighted more.

This relationship is captured by minimizing the reprojection error of the reconstructed

point instead. However, this is a non-linear optimization problem which is not easily

solved. Instead of performing this optimization at every reconstruction step, the

50



methods described earlier can be used as an initial estimate for the reconstruction,

which can then be refined later. Minimizing the reprojection error is part of the

bundle adjustment process, which is discussed in the next section.

2.6 Global Optimization

The algorithms discussed so far are core components of the visual odometry task,

which is only concerned with the incremental frame-to-frame trajectory. As such,

small errors in the odometry estimation can accumulate over distance and result in

large drift. If the camera returns to a previously observed scene, the drift can be

corrected, a task known as loop closure. To do this, there need to be mechanisms

in place to fix the entire trajectory such that it is globally consistent with the map.

The task of maintaining global consistency is the differentiating factor between visual

odometry and SLAM [72].

2.6.1 Bundle Adjustment

One way of maintaining global consistency between the map and trajectory is to

perform bundle adjustment. If a list of frame-landmark observations is maintained,

obtained during both odometry and loop closure, a large optimization problem can

be formulated that minimizes the total reprojection error of all the landmarks into

all the frames they are observed in, by jointly optimizing over both the frame poses

and the landmark coordinates. Assuming that there are 𝑛 frames that observe 𝑚

landmarks, let x𝑖𝑗 be the observed pixel coordinate of landmark 𝑗 observed by frame

𝑖, T𝑖 be the pose matrix of frame 𝑖, X𝑗 be the 3D coordinate of the 𝑗th landmark,

C(X) be the camera model, and 𝑣(𝑖, 𝑗) be the binary indicator variables that are 1 if

frame 𝑖 observes landmark 𝑗 and 0 otherwise:

arg min
T𝑖∀𝑖,X𝑗∀𝑗

𝑛∑︁
𝑖

𝑚∑︁
𝑗

𝑣(𝑖, 𝑗)‖C(T𝑖X𝑗) − x𝑖𝑗‖2 (2.44)

The optimization can be implemented easily using non-linear solvers like Ceres
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Figure 2-10: SLAM graph formulation, showing the edges used in bundle adjustment
(blue) and pose-graph optimization (red). Probabilistic smoothing-based approaches
represent the graph as a factor graph and use all edges. The nodes are camera poses
T𝑖 and landmark coordinates X𝑘, and the edges are landmark observations x𝑖,𝑘 of
landmark 𝑘 by frame 𝑖, and odometry measurements Z𝑖,𝑗 between frames 𝑖 and 𝑗.

[2]. Care must be taken to avoid adding outliers into the optimization, although loss

functions can be added to mitigate the effects of outliers. The bundle adjustment

problem can also be formulated as a graph, where each node is a frame pose or a

landmark coordinate, and each edge between a pose and landmark is an observation

and observation model (projection function in this case), as shown in figure 2-10. Note

how loop closure constraints are formulated by having observation edges between later

frames and earlier landmarks. The task is then to assign values to each node such that

the costs of the edges (errors between observations and observation model outputs) is

minimized. The graph optimization problem can be implemented using frameworks

like g2o [43].

Because there are usually a large number of landmarks, the number of frame-

landmark observations can be very large, making the optimization problem slow to

solve. Bundle adjustment is thus usually only performed at the end of a trajectory

and not useful in real-time. Sliding-window bundle adjustment sacrifices global con-

sistency for real-time usability by optimizing the trajectory only over the last few

frames, obtaining local consistency. Another way to obtain global trajectory-only

consistency (sufficient for loop closure) is by removing the map from the optimization

entirely and only optimizing over poses, known as pose-graph optimization.
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2.6.2 Pose-graph Optimization

Pose-graph optimization is another graph optimization problem that optimizes a tra-

jectory given odometry constraints between frame poses. The inter-frame pose trans-

formations obtained from the odometry and loop closure steps are used as observations

to create a pose-graph, where each node is again a frame pose and each edge between

poses is an odometry estimate (incremental pose transformation), as shown in figure

2-10. Note that loop closure constraints are now directly represented as pose trans-

formations as well. The observation model in this case is the relative transformation

between the two poses; specifically, for an edge connecting two world-frame poses 𝑖

and 𝑗 with rotation matrices and translation vectors R𝑖, t𝑖, R𝑗, and t𝑗:

R𝑖𝑗 = R𝑗R
𝑇
𝑖 (2.45)

t𝑖𝑗 = t𝑗 −R𝑖𝑗t𝑖 (2.46)

The difference between this transformation (denoted as T𝑖𝑗) and the observed

odometry pose transformation (denoted as Z𝑖𝑗) is used as the error to be minimized.

The error can be represented as:

e𝑖𝑗 = Z𝑗𝑖T𝑖𝑗 (2.47)

where Z𝑗𝑖 is the inverse pose matrix of Z𝑖𝑗. Note that e𝑖𝑗 becomes the identity pose

matrix (identity rotation matrix and zero translation vector) when the error is zero.

Again, graph optimization packages can be used to solve for the global trajectory

that minimizes the total error from odometry and loop closure estimates. Note that

without loop closure to force correction, the solution will be the original trajectory

as it will have an error of zero.

The optimization formulations so far have all been non-probabilistic, by assuming

that all observations are perfect. Much better performance can be achieved by mod-

eling probabilistic distributions of measurement uncertainties and integrating them

into the graph optimizations. For example, in practice, pose-graph optimization is a
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probabilistic approach, where each odometry estimate is modeled as a distribution.

The optimization will then place more weight on the more certain measurements to

give a maximum likelihood estimate of the global trajectory. This probabilistic ap-

proach to global optimization can be extended to optimizing over both the poses and

map as well. Compared to bundle adjustment, formulating this graph problem prob-

abilistically allows much faster, real-time performance. Although graph-based SLAM

is outside of the scope of this thesis, the next section will give a brief introduction of

this modern approach to SLAM for completeness.

2.6.3 Smoothing-based SLAM

If we reconsider the graphical model of SLAM in figure 2-10 probabilistically and

use all edges, each observation can now be modeled as a conditional probability

distribution. In particular, landmark observations by frames can be modeled with

the likelihood function 𝑃 (x𝑖𝑗|T𝑖,X𝑗), and odometry estimates can be modeled with

𝑃 (T𝑖|T𝑖−1,Z𝑖−1,𝑖). The posterior distribution of the full trajectory T of 𝑛 frames and

all 𝑚 landmark coordinates X given landmark observations x and odometry Z can

then be written as:

𝑃 (T,X|x,Z) ∝ 𝑃 (T0)
𝑛∏︁
𝑖

𝑃 (T𝑖|T𝑖−1,Z𝑖−1,𝑖)
𝑚∏︁
𝑗

𝑃 (x𝑖𝑗|T𝑖,X𝑗) (2.48)

Maximizing this value then obtains the maximum likelihood trajectory and map.

To solve this optimization efficiently, the graphical model can be represented as a

factor graph [42] to model the factorization of the posterior distribution. Each ob-

servation edge becomes a factor in the factor graph which encodes the conditional

distribution, and each node is a variable. The methods used to solve this factor

graph formulation of SLAM efficiently are known as smoothing-based approaches.

This is a common approach to modern SLAM and can be solved by packages like

iSAM [38] and GTSAM [19].
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Chapter 3

Related Work

Although not nearly as commonly used as perspective cameras, the benefits of om-

nidirectional cameras have motivated a number of results that use omnidirectional

cameras (both fisheye and catadioptric) for navigation tasks. This section will discuss

some of the related work in these areas.

Starting from the first step of the SLAM pipeline, we start with related work in the

area of feature correspondence on omnidirectional images. Although several existing

works claim that the KLT tracking algorithm works sufficiently well for navigation

tasks without modification on omnidirectional images [77], a number of other works

have presented improvements to KLT for the omnidirectional tracking task. Wang

et al. [89] evaluates KLT on fisheye images for the purpose of object tracking. They

claim that KLT cannot track features for any reasonable length of time because of

warping, and presents improvements to compensate for short tracks for object track-

ing. Several works [51, 5, 67] attempt to improve on the inaccuracies introduced by

the radial distortion by modifying the LK algorithm directly, by introducing addi-

tional parameters to the warping function to model the radial distortion. Lourenço et

al. [51] additionally evaluates their modification, showing a decrease in pixel tracking

error by half, as well as fewer tracking outliers.

In the area of descriptor-based matching, various descriptors have also been pre-

sented attempting to be invariant to the warping present in wide-angle images.

SPHORB [92] and BRISKS [32] are two descriptors based on ORB and BRISK re-
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spectively that operate on spherical equirectangular images, by modeling the image

as a sphere and sampling in a geodesic pattern. Several works, including sSIFT and

pSIFT [33], sRD-SIFT [52], Tri-SIFT [88], and OmniSIFT [6] present modifications

to SIFT to improve its performance on radially distorted images. Binary descriptors

based on BRIEF, such as dBRIEF, mdBRIEF [86], and TPBRIEF [93], have also

been presented. In particular, dBRIEF and mdBRIEF are used by MultiCol-SLAM

[84], a SLAM system designed for fisheye cameras. A number of these descriptors

handle the fisheye distortion by using the camera model or distortion model to sam-

ple pixels at rectified coordinates to compute the descriptor, effectively undistorting

the image. As such, they are only able to operate on cameras with less than 180

degrees of FOV. Three works [48, 91, 54] have also shown good results using the

center-symmetric local binary patterns (CSLBP) operator as a descriptor to perform

matching on fisheye images. Analysis papers that evaluate existing descriptors have

also been presented. In particular, Benseddik et al. [10] evaluates the BRISK de-

scriptor on catadioptric images and claims it performs well. Kropp [41] evaluates

several of the descriptors based on SIFT for matching on omnidirectional images, and

concludes that the performance improvements are marginal.

Continuing on to full visual odometry and SLAM, several systems have been pre-

sented that use omnidirectional cameras. Early approaches [17, 80, 73] use catadiop-

tric or multi-camera systems to perform omnidirectional monocular visual odometry.

Corke et al. [17] and Scaramuzza et al. [73] use catadioptric cameras modeled by the

unified camera model. Corke et al. [17] uses optical flow for feature correspondence,

while Scaramuzza et al. [73] uses SIFT features. Tardif et al. [80] uses a multi-

camera system for an omnidirectional view, and also uses SIFT features due to KLT

not performing adequately at the frame rate used. More recently, full SLAM and

visual odometry systems have been developed that support omnidirectional fisheye

cameras, using the full image directly and not cropping or rectifying. MultiCol-SLAM

[84] is a feature-based multi-camera SLAM system that supports fisheye cameras, by

adding support for non-pinhole camera models and using dBRIEF and mdBRIEF

descriptors. OpenVSLAM [79] is another feature-based SLAM system that supports
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many different camera models including fisheye, and uses ORB descriptors. Liu et al.

[49] extends ORB-SLAM [61] to support omnidirectional fisheye cameras by modify-

ing traditional algorithms like PnP to adapt the extended unified camera model [39],

an extension of the unified camera model to better model fisheye lenses. The authors

claim that the use of fisheye cameras improves accuracy and robustness over nor-

mal ORB-SLAM. In addition to feature-based SLAM, direct methods have also been

adapted to support omnidirectional cameras. Large-scale Direct SLAM (LSD-SLAM)

[21] has been extended to support using the full image from omnidirectional cameras

[16] by reformulating the direct image alignment algorithm using the unified camera

model. Similarly, Omnidirectional Direct Sparse Odometry (OmniDSO) [58] extends

DSO [20] by also adapting the unified camera model. Both of the omnidirectional

direct systems have been compared to systems that crop or rectify the images, and

have shown improvements in accuracy and robustness.

To evaluate any system on omnidirectional fisheye images, it is critical to have

datasets containing image sequences captured from fisheye camera systems. Because

of the lack of mainstream use of fisheye cameras, standard benchmarking datasets like

KITTI [26] and EuRoC [14] only have image sequences from perspective cameras, so

alternative datasets containing fisheye images must be used, which are a lot less

common. Published datasets containing images captured using real fisheye cameras

for the purpose of navigation include the TUM omnidirectional dataset [75], the

LaFiDa dataset [85], and the Oxford RobotCar dataset [56]. In particular, the TUM

dataset uses a fisheye stereo pair, useful for evaluating stereo odometry systems.

Synthetic datasets generated in simulation have also been published, in particular a

multi-FOV dataset [94] containing images from both perspective and fisheye cameras

on the same trajectory, useful for comparing performance between the two types of

cameras, and another omnidirectional multi-camera dataset [90].

Finally, other analysis papers that compare omnidirectional and traditional cam-

eras for the SLAM task have also been published, which are the most relevant related

works to this thesis. Zhang et al. [94] implements a semi-direct visual odometry

pipeline to compare performance between wide and narrow FOV cameras, including
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catadioptric cameras. Experiments are conducted to compare performance between

camera types on KLT feature tracking, pose optimization against a fixed map, and

a full visual odometry pipeline. For odometry, translation and rotation errors with

respect to lens FOV are shown for different navigation environments. The authors

conclude that omnidirectional cameras are preferable for indoor environments, while

for urban canyon environments (streets flanked by buildings), narrow FOV cameras

perform better. They also state that the tradeoff comes from sacrificing angular

resolution for wider angular coverage of features. Rituerto et al. [68] implements a

monocular SLAM system using the Extended Kalman Filter (EKF) and SIFT feature

matching to compare traditional cameras with catadioptric cameras. Because of lack

of scale, only orientation errors were compared between different cameras. It was

observed that the accuracy performance of omnidirectional cameras was much better,

although the feature track lifetimes were not significantly different and did not have

an impact on performance. The reconstructed map was also compared between cam-

eras, and also proved to be more accurate for omnidirectional cameras. The authors

thus conclude that omnidirectional cameras are better suited for the SLAM task. It

is important to note that both analyses used the unified camera model. As the double

sphere model is relatively new, its performance has not been analyzed in depth, which

is one of the main contributions of this thesis.
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Chapter 4

Feature Tracking Evaluation

The first part of the SLAM pipeline that will be evaluated is the feature correspon-

dence task. As the feature correspondences will be used by the rest of the SLAM

pipeline, its performance directly affects the performance of the navigation task. In

this section, the Kanade-Lucas-Tomasi (KLT) feature tracking algorithm will be eval-

uated on both perspective and omnidirectional fisheye cameras. Several performance

metrics will be analyzed, including tracking accuracy and track lifetime, and com-

pared over different fields of view and camera motion types.

4.1 Evaluation Method

In order to analyze accuracy, the ground truth locations of the original feature de-

tections must be known. To obtain accurate ground truth, evaluation datasets are

generated from a simulated urban environment in Unity. The camera is simulated

using the double sphere model, using calibration parameters from real lenses. Reso-

lution is fixed at 1024 × 1024 for all FOVs. Ground truth camera poses and depth

maps with the same camera model are also included in the datasets. In addition

to FOV, datasets are categorized by motion type, such as yawing, translation, and

composite motions. Yawing and pitching motions are grouped together as the image

changes the same way, just along a different axis. Translation along the optical axis

is separated into forward and backwards translation, as one causes features to move
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(a) 60 degrees FOV (b) 90 degrees FOV (c) 120 degrees FOV

(d) 160 degrees FOV (e) 195 degrees FOV (f) 250 degrees FOV

Figure 4-1: Images of various FOVs from the simulated dataset

outwards and vice versa, so the behavior of algorithms may be different for those two

motions. Sample images from the datasets are shown in figure 4-1.

Feature detection and tracking algorithms use implementations from OpenCV

[13]. The Shi-Tomasi corner detector [76] is used to detect good features for tracking.

To ensure uniform feature distribution throughout the image, detection is performed

independently in separate regions. Because fisheye images are circular, the regions

are divided in the polar coordinate system, into five radial rings with eight angular

regions each, as shown in figure 4-2. Each newly detected feature is unprojected using

the camera model into a ray. The depth of the ray is found using the depth map, and

the ground truth 3D coordinate of the feature is calculated using the ground truth

camera pose.

Because optical flows relies on the brightness constancy assumption and is not

intended to handle lighting changes, the images are first histogram equalized to com-
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Figure 4-2: Example omnidirectional fisheye image with polar feature regions overlaid

pensate for sudden exposure changes. Tracking is then performed incrementally, with

each frame tracking off of the previous frame, using an 8 × 8 window size and 4

pyramid levels. Failed tracks are detected in a few ways. First, the KLT tracker

implementation itself returns failures for features for which it could not find optical

flows. The algorithm also returns a similarity error between the original patch and

the tracked patch, as the normalized L1 distance (average intensity difference over

the patch size). Errors above a fixed threshold indicate that tracks may have jumped

to different features so are treated as track failures. In addition, features that are

tracked into regions of the image that do not have a valid camera model unprojection

(i.e., outside the image circle) are also failures. Finally, the five-point RANSAC algo-

rithm is run on all tracks to fit an essential matrix, and outliers from this process are

treated as tracking failures. This is the primary, most robust method for detecting

failures; more details about this process are provided in chapter 6. Failed tracks for

the current frame are recorded and the tracks are aborted. For the remaining tracks,

the ground truth feature locations are obtained by reprojecting the 3D coordinates
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into the camera model. The ground truths are used to calculate various error metrics

which are recorded for each track at each frame.

As the camera moves, tracks will inevitably fail or move outside the image. To

maintain the distribution of tracks throughout the image, remaining tracks in each

region are counted after each frame is tracked. Feature detection is performed in

regions with track counts that fall below a threshold to create new tracks. This

allows longer trajectories, where the initial features detected from the first frame

eventually leave the image, to be analyzed.

4.2 Evaluation Metrics

Metrics from optical flow evaluation [8, 24, 74, 7] will be used to evaluate the feature

tracking task. A simple metric is the L2 pixel coordinate error between the tracked

point p and the ground truth g, also known as endpoint error :

𝑒𝐸 = ‖p− g‖ (4.1)

This metric has been argued to be the preferred evaluation metric for optical

flow [7]. Another common metric for optical flow is the angular error, which gives

a relative measure of error for the flow between two frames by only considering the

error in the flow direction vector. Let the flow vector v between two pixel coordinates

(𝑢1, 𝑣1)
𝑇 and (𝑢2, 𝑣2)

𝑇 be represented as v = (𝑢2 − 𝑢1, 𝑣2 − 𝑣1, 1)𝑇 , where the third

component is present to avoid division by zero problems for zero flows. The angular

error is defined as follows, where v̂p and v̂g are the unit flow vectors for the tracked

point and ground truth respectively:

𝑒𝐴 = cos−1(v̂p · v̂g) (4.2)

The error metrics introduced so far have been purely in pixel space, which, for

pinhole models, are roughly equivalent to errors in unprojected ray angles in 3D space,

due to a mostly constant angular resolution per pixel. For other camera models,
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however, the angular resolution per pixel is less constant as a function of distance

from the center of the image. Therefore, a given pixel space error in the outer edge

of a fisheye image can have a very different error in unprojected ray angle than the

same error in the center of the image. As the errors in unprojected ray angles are the

driving factor in the accuracy of the downstream SLAM pipeline, this error will also

be used as a metric to normalize for the effects of uneven angular resolution in pixel

space. We will call this error bearing error and define it as follows, where Ĉ−1(x) is

the normalized camera model unprojection function:

𝑒𝐵 = cos−1(Ĉ−1(p) · Ĉ−1(g)) (4.3)

A final metric is specifically for the feature tracking task combined with essential

matrix estimation to determine good tracks. The inlier ratio, which is the number of

inliers from the RANSAC estimation over the total number of tracks for the frame,

gives a measure of failure rate, which is useful as a higher level metric for evaluating

tracking performance.

4.3 Evaluation Results

From looking at fisheye images, it is evident that the amount of warping in the image

increases as a function of radial distance from the center. Because warping is the

primary factor that would cause pixel space algorithms to perform differently on

fisheye cameras than traditional cameras, analysis will be focused on performance as

a function of radial distance, which correlates with the amount of fisheye distortion.

The radial distances used are normalized with respect to the image size, with 0.5

being the horizontal or vertical distance to the edge of the image (assuming a square

image).

The endpoint and angular error metrics will first be analyzed as a function of

radial distance. As the errors are recorded every frame for every track, and tracks

tend to accumulate error over many frames, using the absolute endpoint error for all

frames will introduce a dependency on track length. To remove this dependency, we
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(a) 𝑟 = 0.1 (b) 𝑟 = 0.2 (c) 𝑟 = 0.3 (d) 𝑟 = 0.4 (e) 𝑟 = 0.45 (f) 𝑟 = 0.48

Figure 4-3: Example feature patch at different radial distances in yaw motion for 250
degree FOV camera

instead consider the change in endpoint error between consecutive frames for features

at different radial distances, which better reflects how the distortion in different radial

regions affects KLT’s incremental tracking accuracy, and also shows which portions

of the image tend to contribute most to the track errors throughout their lifetimes.

Angular error, on the other hand, is already inherently an incremental metric as it is

calculated from flow vectors between consecutive frames.

Figures 4-4 and 4-5 show distributions of relative endpoint error and angular er-

ror, respectively, over different radial distance ranges for different FOV cameras and

motion types. For most motion types, it can be seen that the errors are generally

similar across FOVs, except for the slight increases in error for fisheye cameras at the

outermost radial distances where distortion is most extreme. This can be explained

by visualizing how the local distortion changes across the image. Figure 4-3 shows

an example feature patch as it moves outwards in a yaw motion. The patch does not

distort much locally, with only slight stretching in one direction, until the outermost

edge where the change is more drastic, which explains the results. In addition to the

distortion changing the appearance of features too drastically for accurate tracking,

feature patches also undergo extreme stretching near the outer edges due to the dif-

ference in angular resolution for fisheye lenses. Any tracking errors will therefore be

amplified as the ground truth point gets stretched away from the tracked point. A

notable exception is for pure roll motion where the camera rotates about its optical

axis. The features in this case stay at the same radial distances and do not move ra-

dially, so no change in distortion is experienced. Thus, the errors are mostly constant

throughout the image, with drift being the only source of error. Other exceptions
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Figure 4-4: Distribution of change in endpoint error over various radial distances for
different FOVs and motion types

Figure 4-5: Distribution of angular error over various radial distances for different
FOVs and motion types
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Figure 4-6: Distribution of change in bearing error over various radial distances for
different FOVs and motion types

to the trends are the angular errors for the roll, forward translate, and backward

translate motions, where the errors are higher near the center of the image. This is

because features move very little near the center for these motions, so any tracking

error will result in large discrepancies in the flow vector direction.

To normalize for the effects of error amplification due to stretching from uneven

angular resolution, the bearing error will also be analyzed as a function of radial

distance. Similar to endpoint error, bearing error is also an absolute error metric

and tends to accumulate over a track’s lifetime. Thus, only the change in bearing

error between consecutive frames will be considered. Figure 4-6 shows similar plots as

before, using bearing errors instead. It can be seen that the error trends are similar,

with wider FOVs having increased errors near the outer edges. This shows that the

change in distortion at the edges still contributes to the tracking error, rather than just

the stretching amplifying the errors in pixel space. In addition, while the endpoint

errors are very similar across FOVs, the bearing errors exhibit greater differences

between FOVs, where larger FOVs have higher bearing errors. This is due to the
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Figure 4-7: Inlier ratio over radial distance for different FOVs

lower angular resolution of higher FOV cameras, so the same errors in pixel space

result in greater differences between unprojected ray angles.

In addition to analyzing which portions of the images contribute most to tracking

errors, contributions of radial regions to track failures can also be analyzed. This

can be done by analyzing the inlier ratio as a function of radial distance. Figure 4-7

shows average inlier ratios (with standard deviations) in different radial regions for

various FOVs over all motion types. It can be seen that the distributions are very

similar across FOVs, with a slightly higher outlier (tracking failure) rate in the outer

portions of the image for wider FOVs.

Other useful results to consider are distributions of track lifetime until failure, as

well as absolute endpoint and bearing errors over a track’s lifetime in frames. This

gives information about whether wider FOV cameras actually provide longer tracks

that are usable. Table 4.1 shows statistics for track lifetimes, and figures 4-8 and 4-9

show error accumulation over track lifetime in frames, for various FOVs and motion

types. Most motion types demonstrate longer tracks for wider FOVs, although the

increase in track length tapers off. The errors increase at the same rate, but the longer

lifetimes for wider FOVs cause the errors to accumulate higher. Notable exceptions

are the forward and backward translation motions along the optical axis down an

urban canyon, where there is no significant difference in track lifetimes. This can be

explained by analyzing the depths of features returned by the feature detector. For

wide-angle cameras, the image is more zoomed out, so closer features are detected as

further ones are too small. Narrower FOV cameras are more zoomed in so further
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Figure 4-8: Endpoint error over track lifetime for various FOVs and motion types

Figure 4-9: Bearing error over track lifetime for various FOVs and motion types
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Motion FOV Mean Median 3rd quartile SD

Yaw/pitch 60 56.16 54.00 71.00 27.06
90 75.67 71.00 94.00 41.03
120 89.21 85.00 124.00 48.49
160 114.26 125.00 157.00 58.43
195 133.01 128.00 202.00 77.83
250 146.99 135.00 230.00 99.47

Roll 60 86.39 44.00 177.00 74.15
90 85.89 44.00 177.00 73.67
120 83.11 40.00 177.00 73.33
160 123.56 177.00 177.00 66.81
195 117.12 176.00 176.00 67.64
250 112.69 139.00 177.00 67.10

Sideways translate 60 52.14 47.00 73.00 35.64
90 64.27 53.00 92.00 45.25
120 68.75 52.00 95.00 56.28
160 72.03 56.00 110.00 61.78
195 85.30 67.00 152.00 72.47
250 83.72 70.00 143.00 68.73

Forward translate 60 21.25 14.00 28.00 21.67
90 20.70 14.00 26.00 21.05
120 18.69 12.00 22.00 20.28
160 17.36 12.00 21.00 18.66
195 17.56 12.00 21.00 17.95
250 17.64 13.00 23.00 15.33

Backward translate 60 44.06 42.00 64.00 25.86
90 48.13 47.00 74.00 28.05
120 46.94 46.00 73.00 28.24
160 44.84 44.00 71.00 28.60
195 44.21 43.00 70.00 28.84
250 41.70 40.00 66.00 29.33

Composite 60 13.07 8.00 14.00 14.34
90 14.16 8.00 15.00 16.89
120 17.82 10.00 21.00 20.61
160 15.99 10.00 18.00 18.46
195 20.06 12.00 25.00 21.71
250 20.28 12.00 24.00 21.60

Table 4.1: Track lifetime statistics for various FOVs and motion types

features are detected. Thus, in the urban canyon, all cameras cover a similar distance

along the scene. Therefore, as the cameras move along this axis, features move

outwards or inwards the same amount for all cameras, causing the track lifetimes to
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Figure 4-10: Illustration of feature detection coverage while translating along optical
axis in urban canyon environment. Narrow (green) and wide (blue) cameras cover a
similar depth range, so moving along this direction results in similar track lifetimes.

be similar. An illustration of this effect is shown in figure 4-10. This is an important

observation that affects performance over FOVs for these types of trajectories in the

downstream pipeline as well.

The results shown thus far have been based on motions at reasonable speeds for a

MAV, captured at a reasonable frame rate. However, increasing the FOV of the cam-

era may allow for more extreme speeds seen in other applications. Features move less

across the image for a given motion due to the increased coverage per pixel, allowing

more features to stay in the image and for the tracker to keep up. On the other hand,

the features will now undergo much more change in radial distortion, which may cause

tracking to fail and nullify the potential gains. To analyze this, frames are skipped to

simulate different motion speeds for the yaw and pitch, sideways translate, and back-

ward translate motions. Figure 4-11 shows the average inlier ratio (with standard

deviations) for frame-to-frame tracks as a function of pose difference (i.e., degrees or

meters) between frames. To ensure that the inlier tracks are still accurate, figure 4-12

shows average change in endpoint errors (with standard deviations) over all tracks

for different rates. The results show that there is a clear benefit of fisheye cameras

for high rotational and sideways translation rates. That is, features tend to leave

the images of narrow FOV cameras before they fail from distortion in the wide FOV

cameras, as reflected by the earlier drop-offs. The gains taper off, however, within the

wide FOV range as the increased distortion starts to reduce the potential benefits.

An exception is the backward translation motion, where higher FOVs perform worse

at faster rates. This is because of the effect explained previously for translational
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Figure 4-11: Inlier ratio over motion
rates for various FOVs

Figure 4-12: Change in endpoint error
over motion rates for various FOVs

motions along the optical axis where features move the same amount in the image

for all FOVs, so the only difference is in the change in distortion experienced, from

which fisheye cameras suffer. Nevertheless, the error plots show that even for the

most extreme and unrealistic motions, the inlier tracks of fisheye cameras are still ac-

curate and usable despite being small in number. This allows the downstream SLAM

pipeline to be robust to large motions, as will be seen in chapter 6.

From this analysis, we can conclude that tracking accuracy for fisheye cameras is

similar to perspective cameras, except for slight degradation near the outer edges due

to distortion. Despite this, the wider FOV brings benefits to the tracking task. With

the exception of translating down an urban canyon along the optical axis, omnidi-

rectional fisheye cameras provide longer usable tracks. Furthermore, fisheye cameras

also provide clear benefits for more extreme rotational motion rates, giving accurate

tracks even at unrealistic rates. Finally, the distribution of usable tracks through-

out a much larger portion of the scene provides improvements to the stability of the

downstream SLAM pipeline, as will be analyzed in chapter 6.

71



72



Chapter 5

Feature Matching Evaluation

In addition to feature tracking, descriptor-based feature matching is another approach

to find feature correspondences. In this section, various feature descriptors will be

evaluated for how invariant they are to the forms of warping introduced by fisheye

cameras, and the performance of the matching task across different fields of view

will be evaluated. Additionally, a novel method will first be introduced that locally

rectifies keypoints to allow descriptors to become more invariant to fisheye distortion,

which will also be evaluated.

5.1 Local Rectification

In addition to evaluating existing off-the-shelf descriptors, several novel descriptors

[33, 52, 88, 6, 86, 93] have shown promise in handling radial distortion from wide-angle

images. It is thus potentially valuable to evaluate these approaches alongside existing

descriptors. Although none of the novel descriptors have implementations readily

available for evaluation, we note that a number of them take similar approaches to

handle distortion. Specifically, they use the calibrated camera model or distortion

model to remap how the descriptor is sampled, by sampling on the undistorted pixel

coordinates instead. This is effectively rectifying the entire image using the distortion

model and computing descriptors on that image. Although this allows the descriptors

to be unaffected by the distortion, rectification can only be performed on parts of
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the image that are within 180 degrees FOV, limiting the usable image area. We

therefore present a method that only locally rectifies the pixels inside a keypoint.

This method can be applied to any descriptor, and will be evaluated later in this

chapter to encapsulate and substitute for the evaluation of the novel descriptors.

The local rectification method assumes the use of a calibrated camera model,

and remaps the pixels inside a keypoint such that they resemble being captured

in the center of the image where distortion is minimal. The feature patches will

therefore appear similarly (up to interpolation errors) in all regions of the image, so

the descriptors that later sample these pixels will effectively become more invariant to

radial distortion. The pixel coordinate map is created as follows, for every detected

keypoint in the image. Let the pixel coordinate of the center of a keypoint be k, and

let p =
[︁
𝑐𝑥 𝑐𝑦

]︁𝑇
be the principal point of the full image where the optical axis lies,

where 𝑐𝑥 and 𝑐𝑦 are from the camera model. The function m(x′) which maps a locally

rectified pixel coordinate x′ inside the keypoint to a pixel coordinate in the original

image is defined as follows:

m(x′) = C(RC−1(x′ − k + p)) (5.1)

Ĉ−1(k) = R

⎡⎢⎢⎢⎣
0

0

1

⎤⎥⎥⎥⎦ (5.2)

where C(X) and C−1(x) are the camera model projection and unprojection functions,

and R is the rotation matrix that rotates the optical axis vector to the unprojected

ray of k, the keypoint coordinate. The map essentially calculates the unprojected

rays as if the keypoint were captured in the optical center of the image, and rotates

and reprojects the rays to determine which pixels in the original image to sample.

A descriptor can now operate in the locally rectified space by remapping the pixels

it samples for a given keypoint. That is, for each coordinate x′ sampled by the

descriptor, sample the pixel at location m(x′) in the original image instead. This has

the effect of removing radial distortion from the feature sampled by the descriptor and
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will potentially help descriptors become more invariant to warping, so this approach

will be evaluated as part of the main feature matching evaluation.

5.2 Evaluation Method

As ground truth feature locations are needed to evaluate correctness of matches,

the same datasets generated from simulated urban environments will be used for

evaluating feature matching. Descriptors will be evaluated on how well they can be

matched to the first frame in the sequence, over increasing magnitudes of motion.

As such, only simple motion sequences (i.e., pure rotation or translation) that keep

features in the first frame visible will be used. The descriptors that will be evaluated

are SIFT [53], SURF [9], ORB [71], BRISK [45], AKAZE [64], KAZE [4], FREAK

[3], DAISY [81], LATCH [47], and BINBOOST [82]. An attempt was also made

to evaluate SPHORB [92], but it was found to be exclusively designed for use on

equirectangular panoramic images and did not function on raw fisheye images. The

off-the-shelf descriptors will be evaluated first, and then the local rectification method

will be used on the descriptors to evaluate improvement.

Feature detection is performed on every frame, using the region-based detection

method described in the previous chapter. For descriptors that are designed for a

specific detector, that detector is used. Otherwise, the SIFT detector is used, except

for FREAK which is used with SURF, as has been done in a previous evaluation study

[11]. The threshold parameters for the detectors are tuned to return approximately

equal numbers of features. Descriptors are then computed for every keypoint, using

implementations from OpenCV [13]. Descriptors from the first frame are matched

against by subsequent frames. Because real-time performance is not needed, the brute

force matcher is used, which compares every descriptor in the first frame for every

descriptor in the current frame and finds the closest match in the descriptor space.

A cross check is also performed to check if the descriptor in the current frame is the

closest one to the descriptor in the first frame. If the descriptor distance between

the closest match is below a threshold, then the match is returned. This threshold is
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adjusted dynamically to evaluate the descriptor, as will be discussed.

Ground truth feature locations are obtained the same way as before, by unproject-

ing the detected keypoints into 3D coordinates in world frame, and reprojecting them

into the current frame. To determine if a match is correct, the size of the keypoint is

used, which is a circle representing the image patch from which the descriptor is cal-

culated. A match is correct if it overlaps sufficiently with its ground truth keypoint.

To quantify overlap, the intersection-over-union (IOU) measurement is used:

𝐼𝑂𝑈 =
𝐾 ∩𝐾𝑔

𝐾 ∪𝐾𝑔

(5.3)

where 𝐾 ∩ 𝐾𝑔 is the overlapping area between a matched keypoint with its ground

truth keypoint, and 𝐾 ∪ 𝐾𝑔 is the combined area covered by both keypoints. In

addition, the L2 pixel distance between the keypoint centers is also used to determine

match correctness. If the IOU is above a threshold and pixel distance is below a

threshold, the match is correct. For this evaluation, an IOU threshold of 50% and

pixel distance threshold of 10 pixels is used.

Another important quantity for evaluating metrics is the number of correspon-

dences, or the number of features from the first frame that have also been detected

in the current frame. It represents the maximum possible number of correct matches.

To obtain this number, all keypoints from the first frame are reprojected into the

current frame. For each keypoint in the current frame, each reprojected keypoint

from the first frame is checked to see if it is the same feature using the same IOU

and pixel distance threshold method. Instead of simply counting the number of key-

points in the current frame that have correspondences, which can double count (i.e.,

two keypoints overlapping with the same keypoint), the following approach is used.

For each correspondence found, the keypoints from both frames are flagged. Flagged

keypoints are then counted for each frame, and the smaller number is used as the

number of correspondences.
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5.3 Evaluation Metrics

The feature matching task can first be framed as a binary classification problem, which

allows metrics for those problems to be used. The task can be framed as follows: for

every pair of keypoints between the two images, classify it as either a match or not

a match, using the descriptor distance as a decision threshold. If there are 𝑛 and

𝑚 keypoints in the images respectively, then the total number of pairs is 𝑛𝑚. The

matching algorithm only finds one match for every keypoint, so the maximum number

of positive classifications is reduced to min(𝑛,𝑚).

As a binary classification problem, the terms true positive, false positive, true neg-

ative, and false negative can now be defined in the context of the matching problem.

A true positive (TP) is a pair of keypoints that represents the same feature and is

determined correctly to be a match. A false positive (FP) is a pair that is incorrectly

determined to be a match. A true negative (TN) is a pair of keypoints that do not

represent the same feature and is rejected correctly. A false negative (FN) is a pair

of keypoints that do represent the same feature but is incorrectly rejected. Note that

both true positives and false negatives are pairs of keypoints that represent the same

feature, so the total number of true positives and false negatives is the number of

correspondences (number of potential correct matches) discussed earlier.

Common binary classification metrics will now be defined. The precision of a

classifier measures how many of the positive classifications are correct, or the ability

of the feature matcher to distinguish between correct and incorrect matches. It is

defined as the ratio between the number of true positives and total number of true

positives and false positives, which in this case is the number of correct matches over

the total number of returned matches:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

# of correct matches
# of total matches

(5.4)

The recall or true positive rate (TPR) of a classifier measures how many of the

potential positive classifications are identified, or the ability of the feature matcher to

identify correct matches out of the set of feature correspondences. It is defined as the
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ratio between the number of true positives and the total number of true positives and

false negatives, which in this case is the number of correct matches over the number

of possible correct matches (number of correspondences):

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

# of correct matches
# of correspondences

(5.5)

The false positive rate (FPR) of a classifier measures how many of the negative

classifications are incorrectly identified as positive, or the likelihood of the feature

matcher to incorrectly return incorrect matches out of the pairs of keypoints that are

not the same feature. It is defined as the ratio between the number of false positives

and the total number of false positives and true negatives, which in this case is the

number of incorrect matches over the number of keypoint pairs that are not the same

feature:

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
=

# of incorrect matches
# of pairs − # of correspondences

(5.6)

The value of the decision threshold, which in this case is the descriptor distance at

which to reject matches, has large effects on these metrics. Raising the threshold will

allow more matches to be returned, increasing the number of both true positives and

false positives. This has the effect of lowering precision and raising recall and FPR.

Lowering the threshold has the opposite effect. As such, when selecting a threshold,

there is a tradeoff between precision and recall, and between TPR and FPR.

One way to evaluate the best possible combination of precision and recall or

TPR and FPR is with precision-recall curves (for precision and recall) or receiver

operating characteristics (ROC) curves (for TPR and FPR). The curves are generated

by sweeping threshold values and calculating precision and recall or TPR and FPR

for different thresholds, and then plotting the two values with respect to each other.

Example precision-recall and ROC curves are shown in figure 5-1. Classifiers with

better optimal values are reflected by a sharper curve with a “knee” closer to the top

right or left corner. This metric is typically quantified by using the area under the

curves as an indicator of classifier performance, called the AUC score.

78



(a) Precision-recall (b) ROC

Figure 5-1: Example precision-recall curve (left) and ROC curve (right)

When choosing between precision-recall and ROC curves, the balance of the

dataset is considered. Precision-recall curves are generally better than ROC curves

for imbalanced datasets, where there are significantly fewer positives than negatives

or vice versa. In the feature matching problem, the number of correct matches is

significantly fewer than the number of keypoint pairs, so precision-recall curves are

better suited for evaluating the feature matching task.

The metrics discussed so far are designed to evaluate the discrimination ability

of classifiers. Because the data in this case (descriptor distance between pairs of

descriptors) is one-dimensional, the classifier is a simple threshold. For this classi-

fier to perform meaningfully, the distribution of descriptor distances between correct

matches compared to incorrect matches needs to be significantly different. Thus, in

addition to evaluating the classifier, we can also evaluate the data generated by the

descriptor itself, for how distinguishably it encodes correct and incorrect matches.

For a given set of matches, if we plot the descriptor distances on a line, there

would ideally be two distinct clusters, one for correct matches and one for incorrect

matches. One metric for evaluating separability of clusters is the silhouette coefficient

[70], which measures how similar a data point is to its own cluster compared to other

clusters. Let the correct and incorrect matches be represented by sets, and let 𝐶(𝑖)

be a function that maps a match to its respective set, ̃︀𝐶(𝑖) be the function that maps

a match to its opposite set, and 𝑑(𝑖) be the descriptor distance of match 𝑖. The
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following can then be written for each match 𝑖:

𝑎(𝑖) =
1

|𝐶(𝑖)| − 1

∑︁
𝑗∈𝐶(𝑖),𝑖 ̸=𝑗

|𝑑(𝑖) − 𝑑(𝑗)| (5.7)

𝑏(𝑖) =
1

| ̃︀𝐶(𝑖)|

∑︁
𝑗∈ ̃︀𝐶(𝑖)

|𝑑(𝑖) − 𝑑(𝑗)| (5.8)

𝑠(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

max(𝑎(𝑖), 𝑏(𝑖))
(5.9)

where 𝑠(𝑖) is the silhouette coefficient for match 𝑖. It ranges from -1 to 1, with 1

meaning it fits well into its cluster, 0 meaning it is between two clusters, and -1

meaning it does not fit well with its cluster. If we take the average of the silhouette

coefficients over all matches, a separability metric for the distribution of descriptor

distances can be obtained. High values indicate good separation of clusters, and low

values indicate poor separation as all matches are equally close to both clusters.

Finally, to have a large number of correct matches, there must first be a large

number of correspondences, or features from the first frame that are also detected

in the current frame. This repeatability metric evaluates the feature detectors rather

than the descriptors. It is defined as the ratio between the number of correspondences

for the current frame and the number of detected keypoints in the first frame that

are visible in the current frame:

𝑅𝑒𝑝𝑒𝑎𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
# of correspondences

# of detections in base frame with valid reprojections
(5.10)

5.4 Evaluation Results

The existing off-the-shelf feature descriptors will be evaluated first for performance

on various FOVs, and to analyze the effect of omnidirectional fisheye cameras on the

feature matching task in general. Then, the proposed local rectification method will

be used on select descriptors to evaluate for performance improvements.
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5.4.1 Existing Methods

Similar to the previous chapter, a large portion of the analysis will be with respect

to the normalized radial distance from the center of the image, as it provides the

most insight into how fisheye distortion affects performance. In addition, because the

motion types analyzed are pure motions with a fixed change in angle or distance per

frame, we can also analyze matching performance as a function of baseline width, or

the change in pose (rotational or translational distance) from the first frame. This

is useful for tasks like loop closure where the camera is near the previously visited

location, but not in the exact location or is facing a different direction, and match-

ing must be performed to find a relative pose from the previous location. Reliable

matching will allow loop closure to be performed at greater baselines from the past

trajectory.

Intuitively, we are interested in the number of correct matches as a function of

baseline, which gives an indication of whether feature matching algorithms are able

to utilize the extra FOV provided by omnidirectional fisheye cameras in spite of the

distortion. However, the number of matches depends on other factors, including the

number of features detected in the first place, so a direct comparison would not be

valid. To normalize for the total number of features, precision and recall values can be

used, but this depends on the descriptor distance threshold chosen. Thus, precision-

recall curves are used to provide insight into matching performance. Figures 5-2

and 5-3 show precision-recall curves for various descriptors and FOVs, for different

motion baselines for yaw, sideways translate, and backward translate motions. Figure

5-4 summarizes these curves by showing AUC scores as a function of baseline. For

yaw motions, performance of most descriptors for FOVs beyond 90 degrees drops as

the baseline is increased. Performance degrades faster for higher FOVs, but matches

are able to be found at greater baselines. Notably, for FOVs greater than 180 degrees,

the AUC is non-zero through the entire rotation, meaning that matches can be found

in all orientations. A noteworthy characteristic of these FOVs is the local peak in

AUC at 180 degrees rotation baseline, due to features at the edges of the first image
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Figure 5-2: Precision-recall curves for various descriptors and FOVs, for yaw motion
baselines
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Figure 5-3: Precision-recall curves for various descriptors and FOVs, for translation
motion baselines
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(a) Yaw (b) Translation

Figure 5-4: AUC scores over motion baselines for various descriptors and FOVs
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Figure 5-5: Matches between two images from a 250 degree FOV camera facing
opposite directions

reappearing at the opposite edges, as shown in figure 5-5. This suggests the ability

of omnidirectional fisheye cameras to localize in a scene regardless of orientation.

For translational motions, all FOVs drop in performance at a similar rate, with no

significant degradation with fisheye cameras. For sideways translation, smaller FOVs

reach zero AUC earlier due to all features leaving the cameras, although at these

points the AUC for higher FOVs is already very close to zero so the gain is not

significant.

To demonstrate the ability of omnidirectional fisheye cameras to localize in all

orientations, an essential matrix is estimated between the first frame and each subse-

quent frame in the yaw dataset by using the five-point algorithm [62] on the matches.

Because the camera only undergoes pure rotation, the lack of translational scale in the

essential matrix does not matter. The rotation matrix is extracted from the essential

matrix and the rotational error from the ground truth pose is obtained. Figure 5-6

shows the rotational errors over rotation baseline for various descriptors and FOVs,

and figure 5-7 shows the inlier ratios for the pose estimates. It is clear that omni-

directional fisheye cameras with FOVs over 180 degrees are able to achieve accurate

pose estimates in all orientations, with accuracy increasing with FOV. Despite the
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Figure 5-6: Rotation error over yaw
baseline for various descriptors and
FOVs

Figure 5-7: Pose estimate inlier ratio
over yaw baseline for various descrip-
tors and FOVs
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decreased performance of descriptors on wide-angle cameras, they are still able to

generate more inlier matches than with narrow FOV cameras, allowing for accurate

pose estimation at wide rotation baselines.

Although the performance of descriptors does not detract from the benefits of

omnidirectional fisheye cameras, it is still useful to understand the cause of the per-

formance degradations for large FOVs. To do this, we can analyze the distributions

of descriptor-space distances within match pairs. In particular, we are interested in

whether correct matches, where both descriptors encode the same feature, have sig-

nificantly closer descriptor distances than incorrect matches. This will allow correct

matches to be distinguished from incorrect matches based on the descriptor distance

threshold. If these distributions are analyzed as a function of change in radial distance,

which represents the change in distortion of a feature, we are effectively evaluating

how invariant the descriptors are to radial distortion. An ideal descriptor would en-

code a feature with the same descriptor vector regardless of how much change in

distortion it experiences, so the descriptor distances would be low for all changes

in radial distance. Figure 5-8 shows these distributions for various descriptors and

FOVs, over all motions. It is clear that for fisheye cameras, the distributions overlap

for large changes in radial distance, regardless of the descriptor used. This indicates

that none of the descriptors handle radial distortion particularly well, and correct

matches cannot be easily distinguished when a feature moves too much across the

image. To summarize the overlap in distributions, figure 5-10 shows plots of silhou-

ette coefficients over changes in radial distance for various FOVs and descriptors.

Although this analysis shows that existing descriptors do not handle fisheye dis-

tortion well, it does not mean that there are no benefits from using fisheye cameras

for feature matching. The previous analysis shows performance as a function of ra-

dial distance, but a given change in radial distance in a wide-angle camera covers

much more of a scene than the same change in a narrow FOV camera. Therefore,

the previous analysis misrepresents how much a feature can physically move before

descriptors can no longer handle the distortion. Instead of using change in radial

distance, change in unprojected ray angle from the optical axis can be used. For an
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Figure 5-8: Descriptor distance distributions over changes in radial distance for vari-
ous descriptors and FOVs
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Figure 5-9: Descriptor distance distributions over changes in ray angle for various
descriptors and FOVs
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Figure 5-10: Silhouette coefficient
over changes in radial distance for
various descriptors and FOVs

Figure 5-11: Silhouette coefficient
over changes in ray angle for various
descriptors and FOVs
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Figure 5-12: Distribution of correct matches over changes in radial distance for various
descriptors and FOVs

Figure 5-13: Distribution of correct matches over changes in ray angle for various
descriptors and FOVs

unprojected unit ray Ĉ−1(x), the angle from the optical axis is:

𝜃 = cos−1(Ĉ−1(x)
[︁
0 0 1

]︁
) (5.11)

Figures 5-9 and 5-11 show similar plots as before but as a function of change in ray

angle. Representing the data with respect to how much the features physically move,

rather than in the image space, brings the performance between FOVs much closer

for most descriptors. For smaller changes in ray angle, the descriptor separability is

similar across FOVs, with only a slight decrease for omnidirectional fisheye cameras

for some descriptors because of the slight distortion still present near the center

of the images. Larger FOVs are thus able to provide matches for greater feature

motions despite an increase in false positives, while retaining similar performance as

perspective cameras for smaller feature motions.

To summarize the effects of change in distortion on matching ability, figures 5-12

and 5-13 show distributions of correct matches (before thresholding) over changes in

radial distance and ray angle respectively. As before, there are fewer correct matches
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(a) Yaw (b) Translation

Figure 5-14: Detector repeatability over motion baselines for various FOVs and de-
tectors

at high changes in radial distance for wider FOVs, but with respect to change in ray

angle, using wide-angle lenses allows for features to physically move more from the

optical axis and still be matched. There is therefore still a benefit to using omnidi-

rectional fisheye lenses for wide-baseline feature matching despite reduced descriptor

performance.

Finally, the feature detectors can be evaluated for repeatability, to analyze how

consistently the same features can be detected as the camera moves. Figure 5-14

shows repeatability as a function of yaw and translation motion baselines, for various

detectors and FOVs. For yaw motions with omnidirectional fisheye cameras, all de-

tectors perform well across the entirety of a full rotation. The ORB detector (based
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on FAST [69]) and BRISK detector (based on AGAST [57]) perform especially well,

with minimal decrease in performance from perspective cameras. For translational

motions, detectors also perform similarly for all FOVs, with performance dropping off

earlier when translating sideways with narrow FOV cameras.

5.4.2 Local Rectification Evaluation

The analysis so far has shown that existing feature descriptors do not perform well

with fisheye distortion, which indicates that there is room for improvement in the

feature matching problem on fisheye cameras. To help introduce more invariance

to distortion to existing descriptors, we will apply the proposed local rectification

method on select descriptors from the previous section. The only modification to the

descriptors is remapping the pixel coordinates such that they sample in the locally

rectified space.

It was found that only BRISK and ORB showed improvements with the modifi-

cation. Other descriptors, like SIFT and SURF, did not show improvements. This

is potentially due to BRISK and ORB being sample-based binary descriptors, so a

simple modification like changing their sampling coordinates has the intended effect.

SIFT and SURF, on the other hand, use more complex properties of the continuous

image signal to compute descriptors, like gradients and Haar wavelet responses, so

the interpolation effects introduced by rectification may be detrimental.

To analyze the improvements to BRISK and ORB, we will once again look at

the AUC scores over rotation and translation baselines, as well as the descriptor-

space distance distribution over changes in radial distance. Figure 5-15 shows AUC

scores for BRISK and ORB with local rectification applied to fisheye cameras, with

previous curves plotted for comparison. The improvements are clear for yaw motions,

with the fisheye cameras nearing or equaling the performance of perspective cameras

over the entire rotation. For BRISK in particular, the curves for the omnidirectional

fisheye cameras are nearly flat, indicating its invariance to distortion. There are slight

improvements to the performance on translation motions as well. Particularly for

sideways translation, the performance of fisheye cameras is now better than or equal
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Figure 5-15: BRISK and ORB AUC scores over motion baselines for various FOVs
with and without local rectification (LR)

Figure 5-16: BRISK and ORB descriptor distance distributions over changes in radial
distance for fisheye cameras with and without local rectification (LR)

to that of perspective cameras at all baselines. Figure 5-16 shows descriptor distance

distributions over changes in radial distance with and without local rectification, and

figure 5-17 shows silhouette coefficients with previous values for reference. It can

be seen that both descriptors with local rectification, especially BRISK, are much

more separable at all changes in radial distance, again indicating improved invariance
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Figure 5-17: BRISK and ORB silhouette coefficients over changes in radial distance
for fisheye cameras with and without local rectification (LR)

to fisheye distortion. We can thus conclude that the local rectification technique

does provide significant improvements to descriptor-based feature matching on fisheye

images, when using binary descriptors like BRISK and ORB.

The analysis of the feature matching task in this chapter has shown that existing

feature descriptors do not handle the distortion introduced by fisheye cameras well.

Matching performance is reduced more drastically for the same motion baselines, due

to descriptors not being able to encode a feature similarly when it undergoes changes

in distortion. To improve performance of descriptors, a novel approach was presented

to locally rectify a feature patch before descriptors are computed. The local rectifica-

tion method provides significant improvements to the BRISK and ORB descriptors,

making them much more invariant to fisheye distortion, which suggests that novel de-

scriptors that use a similar approach [52, 6, 86, 93] may have potential despite some of

them being limited to 180 degrees FOV. Regardless of the performance of descriptors,

omnidirectional fisheye cameras provide benefits for the wide-baseline matching task,

by providing usable matches at greater baselines. In particular, for rotational mo-

tions, omnidirectional fisheye cameras allow for feature correspondences in all camera

orientations. This is especially beneficial for the loop closure task as loops can be

closed without restriction on the camera orientation. Descriptor-based matching can

be used on omnidirectional fisheye cameras for the frame-to-frame feature correspon-

dence task for odometry as well, especially with the local rectification improvement

that allows fisheye cameras to be used with minimal decrease in performance.
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Chapter 6

Visual SLAM Evaluation

Once feature correspondences are found, they can be used to perform the rest of the

SLAM task. In this section, the odometry and reconstruction tasks will be evaluated

for performance with omnidirectional fisheye cameras, and compared to performance

with traditional cameras, using a custom stereo visual SLAM pipeline that supports

arbitrary camera models. To allow existing algorithms to function on non-pinhole

camera models, small modifications must first be made, which will also be discussed

in this section. The simplicity of these modifications reinforces the point that om-

nidirectional fisheye cameras can be used in place of perspective cameras without

significant effort.

6.1 Camera Model Adaptation

A number of the algorithms introduced in chapter 2 rely on having normalized ho-

mogeneous pixel coordinates as inputs, which we observe are simply rays with 𝑍 = 1.

This requires assuming the rays intersect with an image plane of unit depth, meaning

that all points must lie in front of the camera. For omnidirectional camera models,

points that lie behind the camera cannot be converted to homogeneous coordinates.

Therefore, existing pose estimation and triangulation algorithms need to be modified

such that they take general rays as inputs rather than only rays with 𝑍 = 1.

We can first reformulate the epipolar geometry concepts to extend to arbitrary
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(a) Perspective (b) Fisheye

Figure 6-1: Epipolar lines and curves for perspective and fisheye stereo cameras

camera models. Recalling the epipolar plane constraints, which originally project

into pinhole models as epipolar lines, the plane can now be projected into the fisheye

camera models as epipolar curves, as shown in figure 6-1. Feature correspondences

between frames of known poses must now lie on these curves. However, checking a

correspondence for this constraint requires parameterizing the curve in pixel space

and calculating distance to the curve, which is potentially expensive. Instead, we can

operate in 3D space, and check the constraints by unprojecting feature coordinates

into rays. The epipolar constraint equivalent in 3D space is that the rays must lie on

the epipolar plane. The dot product of each ray with a vector normal to the epipolar

plane can thus be used as a distance metric. Letting x1 and x2 represent rays from

a feature correspondence in two images, this effectively gives the epipolar constraint

with the essential matrix E:

x1
𝑇Ex2 = 0 (6.1)

The value of |x1
𝑇Ex2| can thus be used as the error metric for checking the epipo-

lar constraint. For calculating E using the eight-point or five-point algorithms, recall

the reformulation of the above constraint in normalized homogeneous coordinates:
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x1 =
[︁
𝑢1 𝑣1 1

]︁𝑇
(6.2)

x2 =
[︁
𝑢2 𝑣2 1

]︁𝑇
(6.3)

E =

⎡⎢⎢⎢⎣
𝑒11 𝑒12 𝑒13

𝑒21 𝑒22 𝑒23

𝑒31 𝑒32 𝑒33

⎤⎥⎥⎥⎦ (6.4)

e · ̃︀x = 0 (6.5)

e =
[︁
𝑒11 𝑒12 𝑒13 𝑒21 𝑒22 𝑒23 𝑒31 𝑒32 𝑒33

]︁𝑇
(6.6)

̃︀x =
[︁
𝑢2𝑢1 𝑢2𝑣1 𝑢2 𝑣2𝑢1 𝑣2𝑣1 𝑣2 𝑢1 𝑣1 1

]︁𝑇
(6.7)

If we let x1 and x2 represent general rays with coordinates x1 =
[︁
𝑥1 𝑦1 𝑧1

]︁𝑇
and x2 =

[︁
𝑥2 𝑦2 𝑧2

]︁𝑇
instead of homogeneous coordinates, ̃︀x then becomes:

̃︀x =
[︁
𝑥2𝑥1 𝑥2𝑦1 𝑥2𝑧1 𝑦2𝑥1 𝑦2𝑦1 𝑦2𝑧1 𝑧2𝑥1 𝑧2𝑦1 𝑧2𝑧1

]︁𝑇
(6.8)

The equation e · ̃︀x = 0 can then be written for each correspondence, and the

remaining formulations of the eight-point [50] and five-point [62] algorithms follow as

before.

For the PnP algorithm, the problem is already formulated to use rays as inputs.

In particular, for the Lambda Twist [65] P3P implementation, although it is intended

to take homogeneous coordinates as input, the algorithm immediately normalizes the

homogeneous coordinate inputs into unit vectors at its first step, so any ray can be

used as input.

Continuing onto triangulation algorithms, recall the derivation of the DLT algo-

rithm for computing a 3D world point X from normalized homogeneous coordinates.

For each of the observing cameras with pose T observing X at homogeneous coordi-

nate x:
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TX = 𝑤x = 𝑤
[︁
𝑢 𝑣 1

]︁𝑇
(6.9)

t𝑇1X = 𝑤𝑢 (6.10)

t𝑇2X = 𝑤𝑣 (6.11)

t𝑇3X = 𝑤 (6.12)

(𝑢t𝑇3 − t𝑇1 )X = 0 (6.13)

(𝑣t𝑇3 − t𝑇2 )X = 0 (6.14)

The last two equations are obtained by rearranging, and are the expressions mini-

mized over all observations to find the optimal X. If we now replace x with a general

ray
[︁
𝑥 𝑦 𝑧

]︁𝑇
:

TX = 𝑤x = 𝑤
[︁
𝑥 𝑦 𝑧

]︁𝑇
(6.15)

t𝑇1X = 𝑤𝑥 (6.16)

t𝑇2X = 𝑤𝑦 (6.17)

t𝑇3X = 𝑤𝑧 (6.18)

(𝑥t𝑇3 − 𝑧t𝑇1 )X = 0 (6.19)

(𝑦t𝑇3 − 𝑧t𝑇2 )X = 0 (6.20)

The last two equations can then be written in matrix form and stacked for each

observation, and the triangulation can be solved as before. The other triangulation

algorithm introduced, which finds midpoints of rays and is suitable for a large number

of observations, already uses unit rays as inputs, so no modification is necessary.

The changes required in these algorithms, if any, are only small changes to the

inputs and not major changes to the core of the algorithms themselves. As such,

adapting existing SLAM pipelines to use omnidirectional fisheye cameras requires

100



minimal effort, and doing so provides significant benefits as will be shown in the

remainder of this chapter.

6.2 Evaluation Method

To evaluate the SLAM pipeline on omnidirectional fisheye cameras, the odometry

and reconstruction steps are first evaluated independently of each other. Odometry

is evaluated without dependence on the map or stereo matching by using the ground

truth depth maps from the simulated dataset. Reconstruction is evaluated without

dependence on the pose estimate by using the ground truth poses. The full stereo

SLAM pipeline is then evaluated on both simulated and real data. From the simulated

dataset, only composite trajectories will be used to represent realistic situations.

For odometry, feature correspondences are extracted at every frame using KLT

feature tracking. Both feature tracking and matching were found to give similar

results for the downstream SLAM pipeline, so feature tracking was chosen for speed of

computation. As before, when new features are detected, the ground truth depth map

for the current frame and the current odometry pose estimate are used to calculate

the estimated world coordinate for each feature landmark. To align trajectories,

the first frame pose is initialized to the ground truth pose. Subsequent poses are

then estimated using the Lambda Twist P3P [65] and RANSAC version of the PnP

algorithm. Tracks are first filtered by estimating an essential matrix using the five-

point RANSAC algorithm [62], and removing tracks that fail the epipolar constraint

check, as described earlier. A threshold of 0.5 degrees from the epipolar plane is

used. Remaining features that are tracked into the current frame are unprojected

into rays and used as inputs into the PnP algorithm, as well as their 3D world

coordinates calculated upon detection. RANSAC is used to iteratively select sets

of four features, estimate up to four poses using the Lambda Twist P3P algorithm

on three of the points, and use the fourth point to select the pose that gives the

minimum reprojection error. The world coordinates of all features are then projected

back into the estimated pose to calculate reprojection error, and errors that fall below
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a threshold are counted as inliers at each iteration of RANSAC. The estimated pose

that gives the most inliers is used as the RANSAC output. As a final refinement step,

the pose is optimized over all inliers to minimize reprojection error using Ceres. After

the odometry estimate is calculated, the features in each binning region are counted,

as before. Because imbalanced feature distribution in the image can cause RANSAC

to sample features from only one part of the image, causing instability in the pose

estimate, redetection and pruning are done to ensure even distribution of features

throughout the image. Feature detection is run on regions with too few features. For

regions with too many features, the excessive tracks are removed in order of track

lifetime, as the oldest tracks are most likely to have accumulated the most drift. The

entire process described is repeated for each frame to obtain an estimated trajectory,

which is then compared to the ground truth trajectory for evaluation.

For reconstruction, features are tracked and filtered as before. At each frame,

each track is unprojected into a ray originating from the ground truth camera pose.

For each track, all rays from its current and past frames are input into the midpoint

triangulation algorithm to obtain a triangulated point for the landmark. The rays

are first checked for sufficient angular coverage by computing dot products between

all pairs of rays. If the minimum dot product is below a threshold, the triangulation

is used as the reconstructed point; otherwise, the result is discarded because of high

uncertainty. As the feature distribution is not important for this task, only redetection

is performed in regions with too few remaining tracks so that a complete map can be

built over long trajectories. After all frames in the trajectory are processed, bundle

adjustment is performed using Ceres [2] as the midpoint triangulation algorithm does

not optimize for reprojection error. As the trajectory uses the ground truth poses,

only the landmark coordinates are adjusted to optimize for total reprojection error

over all frames each landmark is observed in. The final map is then compared to the

ground truth map for evaluation.

The full SLAM pipeline without ground truths is performed using the same ap-

proaches as the individual tasks. Instead of ground truth depth maps, a stereo pair

with known baseline is used to estimate depth for each feature upon detection. The
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Figure 6-2: Setup used for custom RealSense dataset

Lucas-Kanade algorithm is used to match features between the cameras. An essen-

tial matrix calculated from the known stereo pair transformation is used to filter

matches that fail the epipolar constraint check, using a threshold of 0.5 degrees from

the epipolar plane. The DLT triangulation algorithm is then used to compute the

3D coordinates of the features in the camera frame, which are then placed into the

world frame using the current estimated camera pose. For each frame, the odometry

step proceeds as before to obtain a pose estimate, followed by the reconstruction step,

which uses the pose estimate to triangulate remaining features that were not stereo

matched to build a more complete map. At the end of the trajectory, full bundle

adjustment is performed to obtain a globally consistent map and trajectory estimate.

As ground truth depth maps and trajectories are no longer required, real datasets

can be used to evaluate the system. The TUM omnidirectional dataset [75], which

contains images from a stereo pair with 185 degree FOV cameras and ground truth

poses for evaluation, is used to evaluate the feasibility of using fisheye cameras for

SLAM. Only the indoor trajectories are used as those are the only ones that contain

ground truths. In addition, a calibration dataset is provided, allowing a double sphere

model to be calibrated. For comparing fisheye and traditional cameras, a custom

dataset was collected using an Intel RealSense T265 tracking camera, which has a

stereo pair with 170 degrees FOV, and an Intel RealSense D435 stereo camera, with

80 degrees FOV, mounted together as shown in figure 6-2. The T265 also performs

its own odometry which can be used as an approximate ground truth for reference.
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In addition, the trajectories start and end at the same location, which allows the

drift to be compared between the two cameras without requiring a ground truth

trajectory. To validate the comparison in different environments, both indoor and

outdoor trajectories are included.

6.3 Evaluation Metrics

To evaluate trajectories, existing metrics for comparing trajectories [78] will be used.

The first metric is the absolute pose error (APE), which evaluates the global quality

of the trajectory by comparing absolute distances between between each pose in the

estimated and ground truth trajectories. Given a ground truth pose matrix G𝑖 and

estimated pose matrix P𝑖 at time step 𝑖, the absolute pose error can be computed as:

Ea𝑖 = G−1
𝑖 P𝑖 (6.21)

For evaluating trajectories, comparing the translational component is sufficient as

rotational errors will also reflect as translational errors [78]. As such, a meaningful

statistic for evaluating APE over a trajectory of 𝑛 poses is defined as the root mean

squared error over the translational components tEa of the absolute pose errors:

𝑅𝑀𝑆𝐸(Ea1:𝑛) =

⎯⎸⎸⎷ 1

𝑛

𝑛∑︁
𝑖=1

‖tEa𝑖
‖2 (6.22)

As the visual odometry task is prone to drift, it is also meaningful to evaluate

incremental pose estimation errors between frames. The relative pose error (RPE)

metric measures the local accuracy of a trajectory between two time intervals. Given

ground truth pose matrices G𝑖 and G𝑖+1 and estimated pose matrices P𝑖 and P𝑖+1

at time steps 𝑖 and 𝑖 + 1, the RPE is defined as:

Er𝑖 = (G−1
𝑖 G𝑖+1)

−1(P−1
𝑖 P𝑖+1) (6.23)

The RPE over a trajectory can again be quantified using the root mean squared
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error over the translational components tEr of the relative pose errors:

𝑅𝑀𝑆𝐸(Er1:𝑛) =

⎯⎸⎸⎷ 1

𝑛− 1

𝑛−1∑︁
𝑖=1

‖tEr𝑖
‖2 (6.24)

For evaluating the reconstructed map, the Euclidean distance between an esti-

mated feature world coordinate and its ground truth will be used as an accuracy

metric. For stereo matching evaluation, the disparity error is typically used instead

of depth error to normalize for the camera geometry and higher depth uncertainty at

large depths. However, in fisheye cameras, the uneven angular resolution causes the

disparity error metric to have less meaning because it maps to different depth errors

in different parts of the image. As such, the normalized depth error will be used to

evaluate stereo matching, where 𝑑𝑔𝑛𝑑 is the ground truth depth:

∆𝑑𝑛𝑜𝑟𝑚 =
∆𝑑

𝑑2𝑔𝑛𝑑
(6.25)

6.4 Evaluation Results

The components of the SLAM pipeline will be evaluated in order of their sequence in

the pipeline, starting with stereo matching, followed by odometry and reconstruction.

6.4.1 Stereo Matching

Because stereo matching uses the Lucas-Kanade optical flow algorithm, which has

already been evaluated in depth in chapter 4, it will only be evaluated briefly in

the context of depth estimation in this section. This evaluation will also verify the

performance of the DLT algorithm adapted to fisheye cameras. Depth errors will be

evaluated over cameras with various FOVs moving through composite trajectories.

Figure 6-3 shows normalized depth errors over radial distances for various FOVs.

Because most of the errors are very small but there are larger outliers, the plot uses

logarithmic scale. There are slight increases in error for fisheye cameras at larger

radial distances, but the magnitude of the errors is still negligible. In addition, there
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Figure 6-3: Normalized stereo depth errors for different radial distances

are more outliers at higher radial distances for all cameras. These results show that

using omnidirectional fisheye cameras does not have a significant impact on stereo

depth estimation performance, so it can be relied on by the rest of the SLAM pipeline.

6.4.2 Odometry

Although odometry was first evaluated using ground truth depth maps, it was found

that the odometry performance from the full SLAM pipeline using stereo depth es-

timates was very similar due to the accuracy of stereo matching. Therefore, the

odometry evaluation will directly use the results from the full pipeline.

Trajectories from the simulated urban environment will be used to compare per-

formance across FOVs. The trajectories involve rotations throughout the motion,

which causes the cameras to be pointed towards low-texture surfaces during certain

periods. As expected, narrow FOV cameras, in particular less than 90 degrees, fail

immediately whenever the camera faces a low-texture wall, ground, or sky, or when-

ever the motion is too fast, due to KLT losing all tracks and PnP not having enough

correspondences to estimate a pose. It was found that the higher the motion rate for

a given trajectory, the higher the required FOV to prevent odometry failures, which

reflects the KLT rate study from chapter 4. This makes it clear that narrow FOV

cameras cannot be used for navigation if robustness is desired. For the purpose of

analysis, we will select trajectories in which all FOVs do not fail, so that the accuracy

can be analyzed. Two such trajectories will be evaluated in depth: one with the cam-
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(a) Trajectory 1 (urban canyon) (b) Trajectory 2 (enclosed)

Figure 6-4: APE over trajectory length for two trajectories

(a) Trajectory 1 (urban canyon) (b) Trajectory 2 (enclosed)

Figure 6-5: RPE over trajectory length for two trajectories

era moving along roads in an urban canyon, facing various directions, and one with

the camera moving in a circular motion in an enclosed area surrounded by buildings.

Figures 6-4 and 6-5 show the APE and RPE respectively over the two trajectories

for various FOVs, with Umeyama alignment [83] which aligns the trajectories with the

ground truth to minimize error. Tables 6.1 and 6.2 show statistics for these metrics,

for both translation and rotation parts. It can be seen that even when the odometry

does not fail, the errors for narrow FOV cameras are higher in certain parts of the

trajectory and much noisier, as reflected by the higher standard deviations and the

spikes in the plots. In particular, in both trajectories, the largest sources of error for

narrow FOVs are from parts of the trajectories where the camera is facing a surface

and moving towards or along it, due to the lower angular coverage of features in
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Trajectory FOV APE (translation / rotation)
Mean SD RMSE Max

Trajectory 1 (urban canyon) 60 0.0815m 0.0697m 0.107m 0.549m
0.298∘ 0.152∘ 0.335∘ 0.832∘

90 0.0625m 0.0483m 0.079m 0.184m
0.3∘ 0.0748∘ 0.31∘ 0.54∘

120 0.048m 0.0363m 0.0602m 0.145m
0.252∘ 0.0623∘ 0.26∘ 0.372∘

160 0.0463m 0.0327m 0.0558m 0.14m
0.174∘ 0.057∘ 0.183∘ 0.261∘

195 0.0403m 0.0148m 0.043m 0.0775m
0.155∘ 0.0427∘ 0.161∘ 0.286∘

250 0.0506m 0.0216m 0.0534m 0.127m
0.236∘ 0.0586∘ 0.243∘ 0.346∘

Trajectory 2 (enclosed) 60 0.0686m 0.0548m 0.0878m 0.319m
0.173∘ 0.0633∘ 0.184∘ 0.328∘

90 0.0506m 0.0312m 0.0538m 0.101m
0.162∘ 0.0568∘ 0.171∘ 0.395∘

120 0.0463m 0.0237m 0.0558m 0.138m
0.146∘ 0.0436∘ 0.15∘ 0.293∘

160 0.038m 0.0169m 0.0448m 0.139m
0.12∘ 0.0355∘ 0.128∘ 0.241∘

195 0.024m 0.0171m 0.0295m 0.0883m
0.0898∘ 0.0288∘ 0.0933∘ 0.211∘

250 0.0167m 0.0128m 0.021m 0.08m
0.0876∘ 0.0253∘ 0.0922∘ 0.152∘

Table 6.1: APE statistics

narrow FOV cameras causing instability in the pose estimation algorithms. This

supports the motion analysis from previous chapters, which again proves that wider

FOVs are needed for robustness against various motion types.

While narrow FOV cameras consistently perform worse, wider FOVs greater than

90 degrees perform much more similarly across the trajectories, especially in parts of

the trajectories where the camera moves along an urban canyon. It was found that

optimal performance is usually with fisheye lenses near 180 degrees FOV. Extremely

large FOVs, such as the 250 degree FOV analyzed, sometimes perform slightly worse

than the 160 and 195 degree FOV cameras in these situations. This is evidenced in

trajectory 1 which contains motions through urban canyons, where the performance
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Trajectory FOV RPE (translation / rotation)
Mean SD RMSE Max

Trajectory 1 (urban canyon) 60 0.0208m 0.0325m 0.0385m 0.224m
0.0504∘ 0.0431∘ 0.0663∘ 0.354∘

90 0.0163m 0.0202m 0.026m 0.174m
0.0372∘ 0.0465∘ 0.0595∘ 0.214∘

120 0.0107m 0.0107m 0.015m 0.0607m
0.0443∘ 0.025∘ 0.0508∘ 0.161∘

160 0.0106m 0.0084m 0.0136m 0.0591m
0.029∘ 0.0398∘ 0.0493∘ 0.32∘

195 0.0092m 0.0074m 0.0119m 0.0523m
0.0252∘ 0.0275∘ 0.0372∘ 0.156∘

250 0.012m 0.0061m 0.0134m 0.0321m
0.0354∘ 0.0353∘ 0.05∘ 0.2∘

Trajectory 2 (enclosed) 60 0.0102m 0.0062m 0.0119m 0.0275m
0.0365∘ 0.0376∘ 0.0477∘ 0.23∘

90 0.0078m 0.0055m 0.0091m 0.0357m
0.0326∘ 0.0255∘ 0.0418∘ 0.132∘

120 0.0061m 0.0047m 0.0083m 0.0277m
0.0294∘ 0.0205∘ 0.0413∘ 0.104∘

160 0.0056m 0.0038m 0.0067m 0.0167m
0.0224∘ 0.0186∘ 0.0291∘ 0.103∘

195 0.0035m 0.0021m 0.004m 0.0129m
0.0153∘ 0.0119∘ 0.0194∘ 0.063∘

250 0.0033m 0.002m 0.0039m 0.0088m
0.0144∘ 0.0101∘ 0.0176∘ 0.053∘

Table 6.2: RPE statistics

for the 250 degree FOV is marginally worse than the other fisheye cameras. This

is consistent with previously shown results [94] which concluded that FOVs beyond

210 degrees stop providing gains in performance, as well as the motion analyses

from previous chapters regarding urban canyon motions. However, for indoor or

enclosed environments with potential large motions, such as trajectory 2, performance

still monotonically increases with FOV because of robustness from angular coverage.

Regardless of the environment, fisheye cameras still provide more robustness and

accuracy than perspective cameras; the only factor in which environment plays a

part in is the extremity of the FOV.

To verify that the conclusions drawn from the analysis on simulated data carry
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(a) Trajectory (b) Absolute pose error

Figure 6-6: TUM trajectory results

over into the real world, the stereo SLAM pipeline will first be run on a dataset from

TUM [75] that contains indoor sequences from a stereo pair with 185 degrees FOV to

validate the SLAM implementation. Figure 6-6 shows a trajectory from the dataset

with the resulting trajectory estimate, as well as a plot of APE through the trajectory.

The APE RMSE is 0.0872m. The dataset paper reports the highest performance on

this trajectory as an RMSE of 0.012m by OKVIS [46]. Although this is lower than the

RMSE of the custom SLAM pipeline, OKVIS is a state-of-the-art system so having

an error on the same order of magnitude is sufficient to verify functionality of the

custom pipeline.

To verify that the comparisons between FOVs based on simulated data carry over

to the real world, the SLAM pipeline will now be evaluated on the custom dataset

containing image sequences of a 170 degree FOV stereo pair and an 80 degree FOV

stereo pair moving together through various trajectories, both indoors and outdoors.

Sample images from the dataset are shown in figure 6-7. An approximate ground

truth is also provided by the tracking module in one of the Intel RealSense cameras.

The trajectories start and end at the same location so the difference between the

endpoints of the estimated trajectories is used as a performance measure.

Figure 6-8 shows some of the trajectories in the dataset, with the odometry from

the narrow and wide cameras as well as the approximate ground truth. It is immedi-

ately clear that the wide FOV camera performs better in all trajectories, especially in

indoor environments where textureless walls are common. For quantitative compari-
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(a) Lab, 80∘ FOV (b) Atrium, 80∘ FOV (c) Outdoors, 80∘ FOV

(d) Lab, 170∘ FOV (e) Atrium, 170∘ FOV (f) Outdoors, 170∘ FOV

Figure 6-7: Images from the custom RealSense dataset

(a) Lab (b) Atrium (c) Outdoors

Figure 6-8: Custom RealSense dataset trajectories

son, the dataset lacks accurate ground truth so APE and RPE will not be analyzed.

Instead, table 6.3 shows the distance between start and end points of the odometry
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Trajectory FOV Endpoint distance

Lab 80 0.4m
170 0.117m

Atrium 80 3.841m
170 0.755m

Outdoors 80 7.569m
170 2.924m

Table 6.3: Distance between trajectory endpoints for custom RealSense dataset

estimates. For all trajectories, the differences are much larger for the narrow FOV

camera, indicating more drift or unstable incremental pose estimates throughout.

6.4.3 Reconstruction

The final component of the pipeline to be evaluated is the quality of the reconstructed

map. The main benefit provided by omnidirectional fisheye cameras is the area cover-

age of the map after the camera moves along a trajectory. Narrow FOV cameras are

focused on one part of a scene so the coverage of the map will naturally be limited,

although the higher resolution will produce a denser map. For the navigation task,

however, being able to map out a larger portion of the environment with less motion

is more preferable, for potential reasons like providing motion planning with more

information so it can plan further ahead or make alternative decisions.

To verify this hypothesis, as well as determine how the use of fisheye cameras af-

fects the accuracy of the maps, the triangulation algorithms are first evaluated using

ground truth poses, to isolate the analysis from the errors introduced by the odom-

etry estimates. Then, the reconstructed maps from the full SLAM pipeline are also

evaluated. The same simulated trajectories are used, with the ground truth depth

maps and poses providing ground truth coordinates for each landmark. Figure 6-9

shows Euclidean distance error distributions for various FOVs over all composite tra-

jectories, for both ground truth and estimated odometry. The errors using ground

truth poses are about half the magnitude of the errors using estimated odometry, and

are marginally higher for smaller FOVs. The trends are similar with the full SLAM
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(a) Ground truth odometry (b) Estimated odometry

Figure 6-9: Euclidean distance error distributions of reconstructed points for various
FOVs

Figure 6-10: Area distributions of reconstructed maps

pipeline using estimated odometry, with fisheye cameras also performing slightly bet-

ter than perspective cameras, due to the increased accuracy of odometry estimates

with larger FOV cameras.

To show that omnidirectional fisheye cameras provide accurate maps with more

area coverage, the distribution of coordinates of correctly mapped points (using an

error threshold of 10cm) is shown in figure 6-10. The range of space covered is also
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FOV X range Y range Z range

60 90.17m 103.54m 50.42m
90 95.39m 108.63m 56.98m
120 99.11m 122.12m 58.47m
160 158.42m 130m 74.1m
195 174.2m 159.24m 80.38m
250 214.16m 192.9m 88.52m

Table 6.4: Range of coordinates mapped for various FOVs

quantified in table 6.4 which shows the distance between map extremes in the three

dimensions. It is clear that the wider the FOV, the more area the reconstructed map

covers for the same trajectory. This result therefore verifies one additional benefit of

using omnidirectional fisheye cameras for navigation, which is the increased area of a

scene that can be mapped with the same camera motion.

The evaluation of the custom stereo SLAM pipeline on both simulated and real

datasets shows that the wide FOV from omnidirectional fisheye cameras provides

benefits for odometry largely in robustness and also in accuracy, especially in indoor

environments where textureless walls are common. Even when narrow FOV cameras

do not fail, fisheye cameras still provide higher performance by allowing for more sta-

ble odometry and therefore smoother, more accurate estimates. This is especially true

in indoor environments, where performance benefits greatly from increased angular

coverage of features, and increases monotonically with FOV. This mostly carries over

to outdoor scenarios as well, except for translation down the urban canyon environ-

ment where extremely large FOVs start to lose their benefits due to lower angular

resolution and increased distortion. Despite this, omnidirectional fisheye cameras

with slightly more than 180 degrees FOV still provide higher performance than per-

spective cameras in these scenarios. In addition, omnidirectional fisheye cameras

provide benefits to the reconstruction task as well, being able to map a larger area

with less camera motion, which is desirable for navigation tasks.
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Chapter 7

Conclusions

The results presented in this work show that omnidirectional fisheye cameras provide

benefits to all parts of the SLAM pipeline. Starting with the KLT feature tracking

algorithm, its performance on fisheye cameras is only marginally worse due to the

radial distortion. However, these drawbacks are outweighed by the benefits, which

are the increased track lengths and tolerance to high motion rates or low frame rates.

With the exception of moving down an urban canyon along the camera’s optical axis,

the length of feature tracks before they fail or leave the image monotonically increases

with the FOV used. Furthermore, the increased FOV also allows more features to be

tracked at higher motion rates because they are able to stay in view between frames.

While these results do not apply to moving down an urban canyon, where fisheye

cameras perform slightly worse with speed due to distortion, the rate at which pixels

move in an image scales much more with rotational and sideways translation motions,

so in practicality the gains provided by wide-angle cameras are still very relevant.

Continuing onto the descriptor-based feature matching task, the results conclude

that existing feature descriptors readily available in libraries like OpenCV do not han-

dle the extreme radial distortion of fisheye cameras well, as matching performance for

all descriptors decreases as a function of how much a feature moves radially in the

image. Using the proposed local rectification method largely solves this by allowing

binary descriptors to sample in a rectified pattern, making them more invariant to

distortion. Regardless of descriptor performance, using omnidirectional fisheye cam-
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eras allows features to be matched in all camera orientations, greatly benefiting the

wide-baseline matching task needed by tasks like loop closure. Analyzing matching

performance as a function of how much a feature physically moves with respect to

the angle from the camera’s optical axis shows that omnidirectional fisheye cameras

allow features to be matched over a wider range of motion baselines.

Finally, the performance of omnidirectional fisheye cameras on the odometry and

reconstruction tasks was evaluated using a custom stereo visual SLAM framework.

Fisheye cameras not only provide large gains in robustness, being able to handle low-

texture images or high motion rates where narrow FOV cameras consistently fail,

but also provide accuracy improvements due to the increased stability introduced

by greater angular coverage of features. This increase in robustness and accuracy

is particularly true for indoor environments, where textureless surfaces are common.

Robustness and accuracy in these environments increases monotonically as a function

of FOV. For outdoor environments, fisheye cameras provide the same benefits, but

FOVs much larger than 180 degrees stop providing gains for translational motions

down urban canyons, where the lower angular resolution and increased distortion

start to dominate. Therefore, while higher FOVs are strongly preferred for indoor

navigation, these results combined with the results from feature tracking show that

applications exclusively in urban canyons like self-driving cars are less in critical need

of omnidirectional cameras, although they will still benefit from using fisheye cam-

eras up to around 200 degrees of FOV. In any other scenario where the camera could

be rotating quickly or facing a surface, such as for MAVs, as large of an FOV as

possible is preferred. Finally, the reconstruction evaluation results show that for the

same amount of motion, omnidirectional fisheye cameras allow a larger area of the

environment to be mapped with no loss of accuracy, only density due to angular

resolution. Therefore, unless the application requires detailed mapping of a small

area, omnidirectional fisheye cameras are preferred for the navigation task. All of

the aforementioned benefits, combined with the ease of adaptation of existing algo-

rithms to use fisheye cameras, show that these cameras should be preferred for general

computer vision tasks that require robustness in the real world.
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